F(x)=-1/x
g(x)=√(3x-9)
Domain of (f/g)(x): ??
1We find out the domain of f(x):
f(x) is a rational function, therefore can take real values if the denominator is not ("0"), therefore the domain of f, will be all values excpet "0"
Domain of f: (-∞,0)U(0,+∞);
o
----------------------------------------------O-------------------------------------------
←-------- -∞ +∞ ----------→
g(x) is a radical square root function, therefore the radicand have to be greater than o equal to "0"
3x-9≥0
3x≥9
x≥3
3
.........................................................Ф--------------------------------
←--------- - ∞ +∞ -----------→
(f/g)(x) = (-1/x) / (√(3x-9)) is a rational function with a square root in the denominator,also the square root don´t take the value of "0";
Therefore:
3x-9>0
3x>9
x>3
The domain of the function (f/g)(x) only can take the values found in all three domains at once.
3
............................................................0---------------------------------
←--------- -∞ +∞-------------→
Answer: (3,+∞)
Oceanic crust is more dense because it contains basalt which is more dense than granite which composes the continental crust.
16287.50 I think? I just googled it though so I’m not sure if it’s correct.
The answer is dipole-dipole and dipole-induced dipole forces.
The dipole-induced dipole is a kind of interaction induced by a polar molecule by disturbing the arrangement of electrons.
- In methyl cyclohexanone molecules, there is a permanent dipole moment due to dipole moment vectors not canceling.
- There is induction of dipole by disturbing the electronic arrangement.
- A permanent dipole moment is created in this interaction.
- Dipole-dipole interactions are defined as the forces that is formed from the close linkage of permanent or induced dipoles.
- These forces are called Van der Waal forces.
- Proteins contain a large number of these interactions, which vary considerably in strength.
To learn more about dipole-dipole interactions visit:
brainly.com/question/14173758
#SPJ4
Answer: A 59.5 degree celcius
The equation that we will use to solve this problem is :
PV = nRT where:
P is the pressure of gas = 1.8 atm
V is the volume of gas = 18.2 liters
n is the number of moles of gas = 1.2 moles
R is the gas constant = 0.0821
T is the temperature required (calculated in kelvin)
Using these values to substitute in the equation, we find that:
(1.8)(18.2) = (1.2)(0.0821)(T)
T = 332.5 degree kelvin
The last step is to convert the degree kelvin into degree celcius:
T = 332.5 - 273 = 59.5 degree celcius