From the equation:
1 mole Fe₂O₃ needs 3 moles of CO
1.75 moles require:
1.75 x 3
= 5.25 moles of CO
<span>negative charge.
The atomic number of 34 tells you immediately that the ion has 34 protons. Since it also has 36 electrons, it has 2 more electrons than needed to be neutral. So the ion will have a negative charge since electrons have a negative charge.</span>
Answer:
B. Equal to 7.
Explanation:
Hydrobromic acid is a strong acid that decreases pH and ammonia is a strong base that increases pH.
As the initial pH of water is 7,0 the addition of 35.0mL of 0.400M HBr will produce a pH less than 7,0. But, the same effect of decreasing pH is reverted for the addition of 35.0mL of 0.400M HNO3.
That means the net effect of the two addition is to have a pH:
B. Equal to 7.
I hope it helps!
Answer is: both reactions
are exothermic.
<span>
In exothermic reactions, heat is released and enthalpy of reaction is less than
zero (as it show second chemical reaction).
According to Le Chatelier's principle when the reaction
is exothermic heat is included as a product (as it show first
chemical reaction).</span>
We can calculate years by using the half-life equation. It is expressed as:
A = Ao e^-kt
<span>where A is the amount left at t years, Ao is the initial concentration, and k is a constant.
</span>From the half-life data, we can calculate for k.
1/2(Ao) = Ao e^-k(1620)
<span>k = 4.28 x 10^-4
</span>
0.125 = 1 e^-<span>4.28 x 10^-4 (</span>t)
t = 4259 years