Answer:
3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45
Step-by-step explanation:
#2 #3 and #5 I think but I could be wrong. Good luck!
This is an exponential equation. We will solve in the following way. I do not have special symbols, functions and factors, so I work in this way
2 on (2x) - 5 2 on x + 4=0 =>. (2 on x)2 - 5 2 on x + 4=0 We will replace expression ( 2 on x) with variable t => 2 on x=t =. t2-5t+4=0 => This is quadratic equation and I solve this in the folowing way => t2-4t-t+4=0 => t(t-4) - (t-4)=0 => (t-4) (t-1)=0 => we conclude t-4=0 or t-1=0 => t'=4 and t"=1 now we will return t' => 2 on x' = 4 => 2 on x' = 2 on 2 => x'=2 we do the same with t" => 2 on x" = 1 => 2 on x' = 2 on 0 => x" = 0 ( we know that every number on 0 gives 1). Check 1: 2 on (2*2)-5*2 on 2 +4=0 => 2 on 4 - 5 * 4+4=0 => 16-20+4=0 =. 0=0 Identity proving solution.
Check 2: 2 on (2*0) - 5* 2 on 0 + 4=0 => 2 on 0 - 5 * 1 + 4=0 =>
1-5+4=0 => 0=0 Identity provin solution.
Applying the division rule of exponents, 6^10/6^6 can be rewritten in the form of b^n as: 6^10/6^6 = 6^4.
<h3>What is the Division Rule of Exponents?</h3>
The division rule of exponents state that if we have a numerator and a denominator with the same base, the quotient will be the base, while we subtract the exponent value of the denominator from the exponent value of the numerator.
For example, if we have, a³/a², the division rule of exponents states that:
a^(3 - 2) = a^1 = a.
Given the expression, 6^10/6^6, we can rewrite the expression in the form of b^n by applying the division rule of exponents as shown below:
6^10/6^6 = 6^(10 - 6)
6^10/6^6 = 6^4
In conclusion, applying the division rule of exponents, 6^10/6^6 can be rewritten in the form of b^n as: 6^10/6^6 = 6^4.
Learn more about the division rule of exponents on:
brainly.com/question/2263967
#SPJ1