It’s easy, if the PH of any acidic solution = -Log[H+], where [H+] is hydrogen ion concentration, multiply each term by (-1) then raise each term as a power to (10), so it will become like this:-
[H+] = 10^(-PH)
Answer:
-125 kJ
Explanation:
You calculate the energy required to break all the bonds in the reactants. Then you subtract the energy to break all the bonds in the products.
H₂C=CH₂ + H₂ ⟶ H₃C-CH₃
Bonds: 4C-H + 1C=C 1H-H 6C-H + 1C-C
D/kJ·mol⁻¹: 413 612 436 413 347
The formula relating ΔHrxn and bond dissociation energies (D) is
ΔHrxn = Σ(Dreactants) – Σ(Dproducts)
(Note: This is an exception to the rule. All other thermochemical reactions are “products – reactants”. With bond energies, it’s “reactants – products”. The reason comes from the way we define bond energies.)
<em>For the reactant</em>s:
Σ(Dreactants) = 4 × 413 + 1 × 612 + 1 × 436 = 2700 kJ
<em>For the products:</em>
Σ(Dproducts) = 6 × 413 + 1 × 347 = 2825 kJ
<em>For the system</em>
:
ΔHrxn = 2700 - 2825 = -125 kJ
Answer:
b
Explanation:
atom combine to form molecules to attain stable configuration
Answer:
A) 7.9 x 10⁶ inches
B) 1004 g
C) 2.8 x 10³ inches/ min
D) 1.2 x 10⁻⁴ mm
Explanation:
A) Since 39.37 inches = 1 m, you can convert meters to inches by multiplying by the conversion factor (39.37 inches / 1 m).
Notice that if 39.37 inches = 1 m then 39.37 inches / 1 m = 1. That means that when you multiply by a conversion factor, you are only changing units since it is the same as multiplying by 1 :
2.0 x 10⁵ m * (39.37 inches / 1 m) = 7.9 x 10⁶ inches
B) Conversion factors : (2.205 pounds / 1 kg) and (453.59 g / 1 pound), because 2.205 pounds = 1 kg and 1 pound = 453.59 g. Then:
1.004 kg * ( 2.205 pounds / 1 kg) * ( 453.59 g / 1 pound) = 1004 g
C) Conversion factor: (39.37 inches / 1 m) and (60 s / 1 min)
1.2 m/s * (39.37 inches / 1 m) * ( 60 s / 1 min) = 2.8 x 10³ inches/ min
D)Converison factor ( 1 mm / 1 x 10⁶ nm):
120 nm (1 mm / 1 x 10⁶ nm) = 1.2 x 10⁻⁴ mm