1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paha777 [63]
3 years ago
14

Click on the link to see the question, Please help!

Chemistry
1 answer:
bogdanovich [222]3 years ago
8 0

Answer:

b and d hope this helped

Explanation:

turtles don't have gills and neither does owls so anything

without gills

You might be interested in
3. After 7.9 grams of sodium are dropped into a bathtub full of water, how many grams of hydrogen gas are released?
Pavel [41]

Answer:

3) About 0.35 grams of hydrogen gas.

4) About 65.2 grams of aluminum oxide.

Explanation:

Question 3)

We are given that 7.9 grams of sodium is dropped into a bathtub of water, and we want to determine how many grams of hydrogen gas is released.

Since sodium is higher than hydrogen on the activity series, sodium will replace hydrogen in a single-replacement reaction for sodium oxide. Hence, our equation is:

\displaystyle \text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}

To balance it, we can simply add another sodium atom on the left. Hence:

\displaystyle 2\text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}

To convert from grams of sodium to grams of hydrogen gas, we can convert from sodium to moles of sodium, use the mole ratios to find moles in hydrogen gas, and then use hydrogen's molar mass to find its amount in grams.

The molar mass of sodium is 22.990 g/mol. Hence:

\displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}

From the chemical equation, we can see that two moles of sodium produce one mole of hydrogen gas. Hence:

\displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}

And the molar mass of hydrogen gas is 2.016 g/mol. Hence:

\displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}

Given the initial value and the above ratios, this yields:

\displaystyle 7.9\text{ g Na}\cdot \displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}\cdot \displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}

Cancel like units:

=\displaystyle 7.9\cdot \displaystyle \frac{1}{22.990}\cdot \displaystyle \frac{1}{2}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1}

Multiply. Hence:

=0.3463...\text{ g H$_2$}

Since we should have two significant values:

=0.35\text{ g H$_2$}

So, about 0.35 grams of hydrogen gas will be released.

Question 4)

Excess oxygen gas is added to 34.5 grams of aluminum and produces aluminum oxide. Hence, our chemical equation is:

\displaystyle \text{O$_2$} + \text{Al} \rightarrow \text{Al$_2$O$_3$}

To balance this, we can place a three in front of the oxygen, four in front of aluminum, and two in front of aluminum oxide. Hence:

\displaystyle3\text{O$_2$} + 4\text{Al} \rightarrow 2\text{Al$_2$O$_3$}

To convert from grams of aluminum to grams of aluminum oxide, we can convert aluminum to moles, use the mole ratios to find the moles of aluminum oxide, and then use its molar mass to determine the amount of grams.

The molar mass of aluminum is 26.982 g/mol. Thus:

\displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}

According to the equation, four moles of aluminum produces two moles of aluminum oxide. Hence:

\displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}

And the molar mass of aluminum oxide is 101.961 g/mol. Hence: \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}

Using the given value and the above ratios, we acquire:

\displaystyle 34.5\text{ g Al}\cdot \displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}\cdot \displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}

Cancel like units:

\displaystyle= \displaystyle 34.5\cdot \displaystyle \frac{1}{26.982}\cdot \displaystyle \frac{2}{4}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1}

Multiply:

\displaystyle = 65.1852... \text{ g Al$_2$O$_3$}

Since the resulting value should have three significant figures:

\displaystyle = 65.2 \text{ g Al$_2$O$_3$}

So, approximately 65.2 grams of aluminum oxide is produced.

5 0
2 years ago
Read 2 more answers
What is the symbol for decimeter
Marysya12 [62]

Answer:

The symbol for decimeter is dm

Explanation:

No need for an explanation

5 0
2 years ago
Read 2 more answers
To prepare the cooling system for an ice cream freezer, the chef adds 59.7 g of salt (NaCl) to 1433.3 g of ice. Predict the lowe
nordsb [41]

Answer: The entire water/ice solution is at the melting/freezing point, 32°F (0°C). Adding rock salt — or any substance that dissolves in water — disrupts this equilibrium.

Explanation: Hope this helps! Have a great day :)

7 0
3 years ago
Help me please i need the answer now<br>(nonsense report)​
rusak2 [61]

Answer:

Quantitative

  • Words, Measurement, Numbers, Charts, Instruments, Quantity, Data

Qualitative

  • Touch, Quality, Hear, Senses, Description, Exact, Narrative, Analyze

Explanation :

Quantitative Data

  • Can't measure
  • Has numerical value
  • Can campare
  • Do not depend on human eye

Qualitative Data

  • Can't measure
  • Don't have numerical value
  • Can't campare
  • Depend on human eye
3 0
3 years ago
When 125 grams of FeO react with 25.0 grams of Al, how many grams of Fe can be produced? FeO + Al → Fe + Al2O3 25.9 g Fe 38.7 g
Serga [27]

<u>Answer:</u> The mass of iron produced will be 77.6 grams

<u>Explanation:</u>

To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}     .....(1)

  • <u>For FeO:</u>

Given mass of FeO = 125 g

Molar mass of FeO = 71.8 g/mol

Putting values in equation 1, we get:

\text{Moles of FeO}=\frac{125g}{71.8g/mol}=1.74mol

  • <u>For aluminium:</u>

Given mass of aluminium = 25.0 g

Molar mass of aluminium = 27 g/mol

Putting values in equation 1, we get:

\text{Moles of aluminium}=\frac{25.0g}{27g/mol}=0.93mol

The given chemical reaction follows:

3FeO+2Al\rightarrow 3Fe+Al_2O_3

By Stoichiometry of the reaction:

2 moles of aluminium metal reacts with 3 mole of FeO

So, 0.93 moles of aluminium metal will react with = \frac{3}{2}\times 0.93=1.395mol of FeO

As, given amount of FeO is more than the required amount. So, it is considered as an excess reagent.

Thus, aluminium metal is considered as a limiting reagent because it limits the formation of product.

By Stoichiometry of the reaction:

2 moles of aluminium metal produces 3 mole of iron metal

So, 0.93 moles of aluminium metal will produce = \frac{3}{2}\times 0.93=1.395moles of iron metal

  • Now, calculating the mass of iron metal from equation 1, we get:

Molar mass of iron = 55.85 g/mol

Moles of iron = 1.395 moles

Putting values in equation 1, we get:

1.395mol=\frac{\text{Mass of iron}}{55.85g/mol}\\\\\text{Mass of iron}=(1.395mol\times 55.85g/mol)=77.6g

Hence, the mass of iron produced will be 77.6 grams

4 0
3 years ago
Other questions:
  • Threats faced by the Everglades and the Louisiana wetlands.
    11·1 answer
  • How many milliliters of 4.00 m hcl(aq) are required to react with 2.75 g of zn(s)?
    11·1 answer
  • The diagram shows changes of state between solid, liquid, and gas. The atoms of a substance gain energy during a change of state
    15·2 answers
  • Why is water able to dissolve salts such as sodium chloride
    11·1 answer
  • given the balanced equation representing a reaction 2NO+O2-&gt;2NO2+energy the mole ratio of NO to NO2 IS
    5·1 answer
  • Using the activity series provided. Which reactants will form products?
    15·2 answers
  • Is the only known planet that is able to support living organisms.
    6·2 answers
  • Which stage in the free radical substitution of methane by chlorine will have the lowest activation
    5·1 answer
  • How can you change a objects state of matter
    5·1 answer
  • What is responsible for the differences in chemical shift observed in carbon 4 in 4-fluoroheptane and carbon 4 in heptane?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!