Answer:
I think the answer would be b, sorry if I'm wrong(EDIT: ITS ACTUALLY AAAAA)
This question seems to be very basic .the ocean is above the plate, the plate material is heavier than water (it being rock). That's pretty much all of it. The plates grind a little and new land pushes up at plate boundaries but this does not seem to be related. The heavier material is below and the lighter above, those being rock and water respectively.
hope this helped u
Answer:
Hello - this is Mrs. Gussman, your chemistry teacher. I wrote this exam question and posting it online is a violation of the academic integrity policy. Remove this post immediately.
Explanation:
Considering the ideal gas law, a sample weighing 9.49 g occupies 68.67 L at 353 K and 2.00 atm.
Ideal gases are a simplification of real gases that is done to study them more easily. It is considered to be formed by point particles, do not interact with each other and move randomly. It is also considered that the molecules of an ideal gas, in themselves, do not occupy any volume.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P× V = n× R× T
In this case, you know:
- P= 2 atm
- V= ?
- n= being 2g/mole the molar mass of H2, that is, the amount of mass that a substance contains in one mole.
- R= 0.082
- T= 353 K
Replacing:
2 atm× V = 4.745 moles× 0.082× 353 K
Solving:
V = (4.745 moles× 0.082× 353 K)÷ 2 atm
<u><em>V= 68.67 L</em></u>
Finally, a sample weighing 9.49 g occupies 68.67 L at 353 K and 2.00 atm.
Learn more: