M(NaCl)=50.0 g
m(H₂O)=150.0 g
m(solution)=m(NaCl)+m(H₂O)
w(NaCl)=100m(NaCl)/m(solution)=100m(NaCl)/{m(NaCl)+m(H₂O)}
w(NaCl)=100*50.0/(50.0+150.0)=25%
Carbon and hydrogen are present in all
nitrogen is common
sulphur in proteins is common
oxygen is common in ethanoic acids
phosphorus is common for phosphate sugars
hope that helps
Answer:
clastic, organic, and chemical
<u>Answer:</u> The concentration of nitrogen dioxide at equilibrium is 0.063 M
<u>Explanation:</u>
We are given:
Initial concentration of nitrogen dioxide = 0.0250 M
Initial concentration of dinitrogen tetraoxide = 0.0250 M
For the given chemical equation:

<u>Initial:</u> 0.025 0.025
<u>At eqllm:</u> 0.025-x 0.025+2x
The expression of
for above equation follows:
![K_c=\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)
We are given:

Putting values in above expression, we get:

Neglecting the negative value of 'x', because concentration cannot be negative
So, equilibrium concentration of nitrogen dioxide = (0.025 + 2x) = [0.025 + 2(0.019)] = 0.063 M
Hence, the concentration of nitrogen dioxide at equilibrium is 0.063 M
Answer:
yes
Explanation:
Usually, it would not affect the crucible, but depending on the temperature of the flame the enamel of the crucible may begin to melt and stick to the metal object being used to handle the crucible. This tiny amount that is melted off can cause very small changes in the original mass of the crucible, which although it is almost unnoticeable it is still there. Therefore, the answer to this question would be yes.