Ionic bonds usually occur between metal and nonmetal ions. For example, sodium (Na), a metal, and chloride (Cl), a nonmetal, form an ionic bond to make NaCl. In a covalent bond, the atoms bond by sharing electrons. Covalent bonds usually occur between nonmetals.
Answer is: chemical.
Making a pancake from batter is chemical change (chemical reaction), because new substances are formed, the atoms are rearranged and the reaction is followed by an energy change.
Batter is thin dough that is poured into a pan to make pancakes.
In physical change, the same substance is present before and after the psysical change, just with different form or state of matter.
Answer:
The gas occupy 2406.4 mL at 80 K.
Explanation:
Given data:
Initial volume of gas = 752 mL
Initial temperature = 25 K
Final temperature = 80 K
Final volume = ?
Solution:
The given problem is solved by using charle's law.
V₁/T₁ = V₂/T₂
V₂ = V₁. T₂ /T₁
V₂ = 752 mL × 80 k / 25 K
V₂ = 60160 mL. k/25 K
V₂ = 2406.4 mL
Ozone depleting chemicals are most likely belong to <u>halogen </u>group on the periodic table.
<h3>Ozone depleting chemicals are most likely to belong to which group on the periodic table?</h3>
Ozone depleting chemicals are the halogen group on the periodic table. Chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), halons, methyl bromide, carbon tetrachloride, hydrobromo-fluorocarbons and methyl chloroform. Fluorine, chlorine, bromine, iodine, astatine and tennessine are the elements of halogen group elements. These elements greatly affected the ozone layer.
So we can conclude that Ozone depleting chemicals are most likely belong to halogen group on the periodic table.
Learn more about ozone here: brainly.com/question/5019112
#SPJ1
Answer:
108.6 g
Explanation:
- 2NaN₃(s) → 2Na(s) + 3N₂(g)
First we use the <em>PV=nRT formula</em> to <u>calculate the number of nitrogen moles</u>:
- R = 0.082 atm·L·mol⁻¹·K⁻¹
- T = 0 °C ⇒ 0 + 273.2 = 273.2 K
<u>Inputting the data</u>:
- 1.00 atm * 56.0 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 273.2 K
Then we <u>convert 2.5 moles of N₂ into moles of NaN₃</u>, using the <em>stoichiometric coefficients of the balanced reaction</em>:
- 2.5 mol N₂ *
= 1.67 mol NaN₃
Finally we <u>convert 1.67 moles of NaN₃ into grams</u>, using its <em>molar mass</em>:
- 1.67 mol * 65 g/mol = 108.6 g