Answer:
CO + 2H2 = CH3OH
Explanation:
1. Label Each Compound With a Variable
aCO + bH2 = cCH3OH
2. Create a System of Equations, One Per Element
C: 1a + 0b = 1c
O: 1a + 0b = 1c
H: 0a + 2b = 4c
3. Solve For All Variables (using substitution, gauss elimination, or a calculator)
a = 1
b = 2
c = 1
4. Substitute Coefficients and Verify Result
CO + 2H2 = CH3OH
L R
C: 1 1 ✔️
O: 1 1 ✔️
H: 4 4 ✔️
Answer:
A) pH of Buffer solution = 4.59
B) pH after 5.0 ml of 2.0 M NaOH have been added to 400 ml of the original buffer solution = 4.65
Explanation:
This is the Henderson-Hasselbalch Equation:
![pH = pKa + log\frac{[conjugate base]}{[acid]}](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2B%20log%5Cfrac%7B%5Bconjugate%20base%5D%7D%7B%5Bacid%5D%7D)
to calculate the pH of the following Buffer solutions.
Answer:

Explanation:
The pH of a solution can be found by using the formula
![pH = - log [ {H}^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5B%20%7BH%7D%5E%7B%2B%7D%20%5D)
Since we are finding the H+ ions we find the antilog of the pH
So we have

We have the final answer as

Hope this helps you
I just got this question and it was lipids sorry if i’m wrong
Answer:
providing bins for each recyclable material could change Larry's mind, coz in return of unnecessary things of household she's getting bins in return so she might get interested!