Answer: 4 molL-1
Explanation:
Detailed solution is shown in the image attached. The number of moles of NaCl is first obtained. Since the molarity must be in units of molL-1, the volume is divided by 1000 and the formula stated in the solution is applied and the answer is given to one significant figure.
Combustion can be defined as the reaction of a compound with oxygen. The enthalpy of combustion of octane is for .
<h3>What is the enthalpy of reaction?</h3>
The enthalpy of reaction is the amount of heat energy absorbed or lost by the molecules in the chemical reaction.
The enthalpy of combustion is the amount of heat energy released by the compound in the reaction with oxygen.
The reaction in which heat is liberated with the reaction of a compound with oxygen has an enthalpy of combustion, equivalent to the enthalpy of reaction.
The combustion of octane can be given as:
Thus, the reaction has combustion energy equivalent to the enthalpy of the reaction is . Thus, option B is correct.
Learn more about enthalpy of reaction, here:
brainly.com/question/1657608
Answer:
C. ΔG is positive at low temperatures, but negative at high temperatures (and zero at some temperature).
Explanation:
Since we need to give energy in the form of heat to vaporize a liquid, the enthalpy is positive. In a gas, molecules are more separated than in a liquid, therefore the entropy is positive as well.
Considering the Gibbs free energy equation:
ΔG= ΔH - TΔS
+ +
When both the enthalpy and entropy are positive, the reaction proceeds spontaneously (ΔG is negative) at high temperatures. At low temperatures, the reaction is spontaneous in the reverse direction (ΔG is positive).
Answer: option D. the ability of a base to react with a soluble metal salt.
Justification:
NaOH is a strong base, which means that in water it will dissociate according to this reaction:
- NaOH(aq) → Na⁺ (aq) + OH⁻ (aq)
On the other hand, CuSO₄ is a soluble ionic salt which in water will dissociate into its ions according to this other reaction:
Hence, in solution, the sodium ion (Na⁺) will react with the metal salt in a double replacement reaction, where the highly reactive sodium ion (Na⁺) will substitute the Cu²⁺ in the CuSO₄ to form the sodium sulfate salt, Na₂SO₄ (water soluble), and the copper(II) hydroxide, Cu(OH)₂ (insoluble).
That is what the given reaction represents:
CuSO₄ (aq) + 2NaOH(aq) → Cu(OH)₂(s) + Na₂SO₄(aq)
↑ ↑ ↑ ↑
soluble metal salt strong base insoluble base solube salt
The heat required to raise the temperature of a certain mass of sample to a specific temperature change, we use the formula mCpΔT where m is mass, Cp is the specific heat of the substance and ΔT is the temperature change. In this case, we substitute and form 1.25 g x 0.057 cal/g C *20 C equal to 1.425 calories.