Answer:
Newton per square meter (N/m2)
Explanation:
Required
Unit of ultimate tensile strength
Ultimate tensile strength (U) is calculated using:

The units of force is N (Newton) and the unit of Area is m^2
So, we have:

or

<em>Hence: (c) is correct</em>
Answer:
peak flow and any engineering considerations related thereto
Explanation:
It should be no surprise that a peak flow meter will report peak flow, sometimes with important maximum-value, time-constant, or bandwidth limitations. There are many engineering issues related to flow rates. A peak flow meter can allow you to assess those issues with respect to the flows actually encountered.
Peak flow can allow you to assess adequacy of flow and whether there may be blockages or impediments to flow that reduce peak levels below expected values. An appropriate peak flow meter can help you assess the length of time that peak flow can be maintained, and whether that delivers sufficient volume.
It can also allow you to assess whether appropriate accommodation is made for unexpectedly high flow rates. (Are buffers or overflow tanks of sufficient size? Is there adequate protection against possible erosion? Is there adequate support where flow changes direction?)
Answer: Combustion of Hydrocarbons
Explanation:
The Independent variable in an experiment is the one whose effect on the dependent variable is being measured. The independent variable therefore is controlled to see the effect it will have in the experiment.
In this experiment, the scientists combusted different types of hydrocarbons (diesel, gasoline, natural gas and a gasoline/ethanol mixture) as they aimed to find out the effect that this burning would have on the environment thereby making the combustion of hydrocarbons the independent variable.
Answer: the modulus of elasticity of the aluminum is 75740.37 MPa
Explanation:
Given that;
Length of Aluminum bar L = 125 mm
square cross section s = 16 mm
so area of cross section of the aluminum bar is;
A = s² = 16² = 256 mm²
Tensile load acting the bar p = 66,700 N
elongation produced Δ = 0.43
so
Δ = PL / AE
we substitute
0.43 = (66,700 × 125) / (256 × E)
0.43(256 × E) = (66,700 × 125)
110.08E = 8337500
E = 8337500 / 110.08
E = 75740.37 MPa
Therefore, the modulus of elasticity of the aluminum is 75740.37 MPa
Hi! bridges could have been collapse due to an error made by the engineers during construction.