Answer:
Problem 1 (10 points) In the first homework you were instructed to design the mechanical components of an oscillating compact disc reader. Since you did such a good job in your design, the company decided to work with you in their latest Blue-ray readers, as well. However, this time the task is that once the user hits eject button, the motor that spins the disc slows down from 2000 rpm to 300 rpm and at 300 rpm a passive torsional spring-damper mechanism engages to decelerate and stop the disc. Here, your task is to design this spring-damper system such that the disc comes to rest without any oscillations. The rotational inertia of the disc (J) is 2.5 x 10-5kg m² and the torsional spring constant (k) is 5 × 10¬³NM. Calculate the critical damping coefficient cc for the system. choice of the damper, bear in mind that a good engineer stays at least a factor of In your 2 away from the danger zone (i.e., oscillations in this case). Use the Runge Kutta method to simulate the time dependent angular position of the disc, using the value of damping coefficient (c) that calculated. you Figure 1: Blue-ray disc and torsional spring-damper system.
Answer:
This shows that the technological designs are similar to the scientific investigation processes.
Explanation:
Scientists carry out scientific investigations and discoveries. They learn from their environment by investigating the natural world. The scientist investigates by problem identification, research the related information, designing and conceptualizing, investigating and analyzing the results and deriving out conclusions.
Similarly the engineers follow the same step and provide solutions to the problems of the society through their products and technological designs. The engineers first identify the need of the product, design and implement the design to provide solution and then evaluate the solution. These are the similar steps that an engineer follow in a technological design of a product or a solution.
Answer: Bricks in Building
Answer:
Technician B
Explanation:
In simplistic terms, the "hot wire" connects the load device to the source of electrical energy. The ground wire provides the return path for current from the load device to the energy source. In many circuits, the "ground wire" is at, near, or defined as "ground" potential (the actual potential of the Earth).
Technician A seems to be confused. Technician B is more correct.
Answer:
0.31 μm
Explanation:
this question wants us to Determine the depletion region width, xn, in the n-side in unit of μm. using the information below.
density in the p-side = 5.68x10^16
density in the n-side = 1.42x10^16

= √(1.42x10⁵)(1.76056335x10⁻¹⁷ + 7.042253521x10⁻¹⁷)(1.2)
= √150.74x10⁻¹¹
= 3.882x10⁻⁵
approximately 0.39μm
xn = 0.39 x 0.8
= 0.31μm
0.31 um is the depletion region width. thank you!