Answer:
The operating principle of a ramp type digital voltmeter is to measure the time that a linear ramp voltage takes to change from level of input voltage to zero voltage (or vice versa).
Answer:
As many variables as we can coherently communicate in 2 dimensions
Explanation:
Visualization is a descriptive analytical technique that enables people to see trends and dependencies of data with the aid of graphical information tools. Some of the examples of visualization techniques are pie charts, graphs, bar charts, maps, scatter plots, correlation matrices etc.
When we utilize a visualization on paper/screen, that visualization is limited to exploring as many variables as we can coherently communicate in 2-dimensions (2D).
Answer:
(d) a and c are correct
Explanation:
METALS : Metal are those materials which has very high ductility, high modulus of elasticity, good thermal and electrical conductivity
for example : iron, gold ,silver, copper
ALLOYS: Alloys are those materials which are made up of combining of two or more than two metals these also have good thermal and electrical conductivity and me liable property
for example ; bronze and brass
so from above discussion it is clear that option (d) will be the correct option
Answer:

Explanation:
Given data:
Diffusion constant for nitrogen is 
Diffusion flux 
concentration of nitrogen at high presuure = 2 kg/m^3
location on which nitrogen concentration is 0.5 kg/m^3 ......?
from fick's first law

Take C_A as point on which nitrogen concentration is 2 kg/m^3

Assume X_A is zero at the surface


Answer:
the torque capacity is 30316.369 lb-in
Explanation:
Given data
OD = 9 in
ID = 7 in
coefficient of friction = 0.2
maximum pressure = 1.5 in-kip = 1500 lb
To find out
the torque capacity using the uniform-pressure assumption.
Solution
We know the the torque formula for uniform pressure theory is
torque = 2/3 ×
× coefficient of friction × maximum pressure ( R³ - r³ ) .....................................1
here R = OD/2 = 4.5 in and r = ID/2 = 3.5 in
now put all these value R, r, coefficient of friction and maximum pressure in equation 1 and we will get here torque
torque = 2/3 ×
× 0.2 × 1500 ( 4.5³ - 3.5³ )
so the torque = 30316.369 lb-in