Answer:
Explained
Explanation:
Cold working: It is plastic deformation of material at temperature below recrystallization temperature. whereas hot working is deforming material above the recrystallization temperature.
Given melting point temp of lead is 327° C and lead recrystallizes at about
0.3 to 0.5 times melting temperature which will be higher that 20°C. Hence we can conclude that at 20°C lead will under go cold working only.
Answer:
Following is attached the solution or the question given.
I hope it will help you a lot!
Explanation:
Answer:
.
Explanation:
Given that
L= 50 m
Pressure drop = 130 KPa
copper tube is 3/4 standard type K drawn tube.
From standard chart ,the dimension of 3/4 standard type K copper tube given as
Outside diameter=22.22 mm
Inside diameter=18.92 mm
Dynamic viscosity for kerosene

We know that

Where Q is volume flow rate
L is length of tube
is inner diameter of tube
ΔP is pressure drop
μ is dynamic viscosity
Now by putting the values



So flow rate is
.
Answer:
No, the claim is not reasonable for 20 W electric power consumption.
It is reasonable for 40 W electric power consumption.
Explanation:
Power = (1/2)*mass flow rate*(square of velocity)
mass flow rate = 1 kg/s
velocity = 8 m/s
square of velocity = 64 m^2 / s^2
Power = (1/2)*(1)*(64)
Power = 32 W
For a fan that consumes 20 W power it is not possible to deliver more power than 20 W but this one is delivering 32 W hence it is a false claim.
For a fan that consumes 40 W it is indeed possible to deliver 32 W considering the efficiency. Hence this claim is reasonable.