Oxygen gas produced : 0.7 g
<h3>Further explanation</h3>
Given
10.0 grams HgO
9.3 grams Hg
Required
Oxygen gas produced
Solution
Reaction⇒Decomposition
2HgO(s)⇒2Hg(l)+O₂(g)
Conservation of mass applies to a closed system, where the masses before and after the reaction are the same
mass of reactants = mass of products
mass HgO = mass Hg + mass O₂
10 g = 9.3 g + mass O₂
mass O₂ = 0.7 g
Answer:
The seven SI base units, which are comprised of:
Length - meter (m)
Time - second (s)
Amount of substance - mole (mole)
Electric current - ampere (A)
Temperature - kelvin (K)
Luminous intensity - candela (cd)
Mass - kilogram (kg)
Explanation:
Answer: Volume of the 1M EtOH and water should be 0.75 ml and 9.25 ml respectively to obtain the working concentration.
Explanation:
According to the dilution law,

where,
= molarity of stock solution = 1M
= volume of stock solution = ?
= molarity of diluted solution = 0.075 M (1mM=0.001M)
= volume of diluted solution = 10 ml
Putting in the values we get:


Thus 0.75 ml of 1M EtOH is taken and (10-0.75)ml = 9.25 ml of water is added to make the volume 10ml.
Therefore, volume of the 1M EtOH and water should be 0.75 ml and 9.25 ml respectively to obtain the working concentration
In order to change celcius to kelvin always add 73 to it leaving you with -195.93
he is a good scientist because he postulated that chemical reactions resulted in the rearrangement of the reacting atoms