Answer:
0.74 grams of methane
Explanation:
The balanced equation of the combustion reaction of methane with oxygen is:
it is clear that 1 mol of CH₄ reacts with 2 mol of O₂.
firstly, we need to calculate the number of moles of both
for CH₄:
number of moles = mass / molar mass = (3.00 g) / (16.00 g/mol) = 0.1875 mol.
for O₂:
number of moles = mass / molar mass = (9.00 g) / (32.00 g/mol) = 0.2812 mol.
- it is clear that O₂ is the limiting reactant and methane will leftover.
using cross multiplication
1 mol of CH₄ needs → 2 mol of O₂
??? mol of CH₄ needs → 0.2812 mol of O₂
∴ the number of mol of CH₄ needed = (0.2812 * 1) / 2 = 0.1406 mol
so 0.14 mol will react and the remaining CH₄
mol of CH₄ left over = 0.1875 -0.1406 = 0.0469 mol
now we convert moles into grams
mass of CH₄ left over = no. of mol of CH₄ left over * molar mass
= 0.0469 mol * 16 g/mol = 0.7504 g
So, the right choice is 0.74 grams of methane
The pressure of the nitrogen gas produced is determined as 44.77 atm.
<h3>
What is the pressure of the Nitrogen gas?</h3>
The pressure of the nitrogen gas is determined from ideal gas equation, as shown below;
PV = nRT
P = nRT/V
where;
- n is number of moles = 2 moles
- R is ideal gas constant = 0.08205 L.atm/mol.K
- T is temperature = 68⁰C = 68 + 273 = 341 K
- V is volume = 1.25 L
P = (2 x 0.08205 x 341)/(1.25)
P = 44.77 atm.
Learn more about pressure here: brainly.com/question/25736513
#SPJ1
To solve this question you need to calculate the number of the gas molecule. The calculation would be:
PV=nRT
n=PV/RT
n= 1 atm * 40 L/ (0.082 L atm mol-1K-<span>1 * 298.15K)
</span>n= 1.636 moles
The volume at bottom of the lake would be:
PV=nRT
V= nRT/P
V= (1.636 mol * 277.15K* 0.082 L atm mol-1K-1 )/ 11 atm= <span>3.38 L</span>
The percentage of Chromium in Chromium Oxide is calculated as follow,
Step 1: Calculate Molar mass of Cr₂O₃,
Cr = 51.99 u
O = 16 u
So,
2(51.99) + 3(16) = 103.98 + 48 = 151.98 u
Step 2: Secondly divide molar mass of only chromium with total mass of Cr₂O₃ and multiply with 100.
i.e.
=

× 100
=
68.41 %
So, the %age composition of chromium in chromium oxide is
68.41 %.
Answer:
pretty sure it's heterogeneous
Explanation:
Also, I saw you added me as a friend and I'm kinda curious as to why :)