Answer:
102g
Explanation:
To find the mass of ethanol formed, we first need to ensure that we have a balanced chemical equation. A balanced chemical equation is where the number of atoms of each element is the same on both sides of the equation (reactants and products). This is useful as only when a chemical equation is balanced, we can understand the relationship of the amount (moles) of reactant and products, or to put it simply, their relationship with one another.
In this case, the given equation is already balanced.
From the equation, the amount of ethanol produced is twice the amount of yeast present, or the same amount of carbon dioxide produced. Do note that amount refers to the number of moles here.
Mole= Mass ÷Mr
Mass= Mole ×Mr
<u>Method 1: using the </u><u>mass of glucose</u>
Mr of glucose
= 6(12) +12(1) +6(16)
= 180
Moles of glucose reacted
= 200 ÷180
= mol
Amount of ethanol formed: moles of glucose reacted= 2: 1
Amount of ethanol
=
= mol
Mass of ethanol
=
=
= 102 g (3 s.f.)
<u>Method 2: using </u><u>mass of carbon dioxide</u><u> produced</u>
Mole of carbon dioxide produced
= 97.7 ÷[12 +2(16)]
= 97.7 ÷44
= mol
Moles of ethanol: moles of carbon dioxide= 1: 1
Moles of ethanol formed= mol
Mass of ethanol formed
=
= 102 g (3 s.f.)
Thus, 102 g of ethanol are formed.
Additional:
For a similar question on mass and mole ratio, do check out the following!
It is an exothermic reaction
Answer:
If the cap is left off, some of the dissolved CO2 can escape as gas from the bottle, making the pop go flat faster (less dissolved CO2 in pop). If the cap is placed tightly, the gaseous CO2 cannot readily escape the bottle thus your pop won't go flat
Explanation:
If the cap is left off, some of the dissolved CO2 can escape as gas from the bottle, making the pop go flat faster. If the cap is placed tightly, the gaseous CO2 cannot readily escape the bottle thus your pop won't go flat.
Just some fun related concept:
A similar concept comes into play for the reason behind why pop tastes better in fridge then just keeping at normal temperature. This is because gases tend to have high solubility at cold temperatures thus CO2 is more readily dissolved in fridge than outside room temperature which is why it tastes great!
Answer:
a. true
Explanation:
It is true that, the materials in the flux covering on an electrode determine the electrical characteristics of the electrode.