Answer:
2 eV
Explanation:
The energy of a photon of light is given by the formula

where
h is the Planck constant
c is the speed of light
is the wavelength of the photon
In this problem we have:


is the wavelength of the photon
Therefore, the energy in Joules is

We want to convert this energy into electronvolts: we know that the conversion factor is

Therefore,

Answer:2.2059
Explanation:find their total ram is(14+(1×3))
Find the portion occupied by
H2 which is three
Divide h2 by total ram then multiply by mass
The balanced chemical equation would be as follows:
<span>NaCl + AgNO3 -> NaNO3 + AgCl
We are given the amounts of the reactants. We need to determine first which one is the limiting reactant. We do as follows:
0.0440 mol/L NaCl (.025 L) = 0.0011 mol NaCl -----> consumed completely and therefore the limiting reactant
0.320 mol/L AgNO3 (0.025 L) = 0.008 mol AgNO3
0.0011 mol NaCl ( 1 mol AgCl / 1 mol NaCl) = 0.0011 AgCl precipitate produced
</span>
<em>The frequency of the wave with a wavelength of is</em> <u>3.748 × 10 ⁶ /s</u>.
I attached the working and the answer to the question below. I hope I was able to help.
Please note that C = speed of light (2.998 × 10⁸ m/s), ν = frequency and λ= wavelength.
According to this formula:
Q = M*C*ΔT
when we have M ( the mass of water) = 200 g
and C ( specific heat capacity ) of water = 4.18 J/gC
ΔT (the difference in temperature) = Tf - Ti
= 100 - 24
= 76°C
So by substitution:
Q = 200 g * 4.18 J/gC * 76 °C
= 63536 J
∴ the amount of heat which be added and absorbed to raise the temp from 24°C to 100°C is = 63536 J