Answer:
Domain: {-2, -1, 0, 1, 2}
Range: {-5, -1, 3, 7, 11}
Step-by-step explanation:
Given the function, f(x) = -4x + 3:
We could simply substitute the given x-values into the function to solve for its corresponding y-values:
x = -2:
f(-2) = -4(-2) + 3
f(-2) = 8 + 3
f(-2) = 11
x = -1:
f(-1) = -4(-1) + 3
f(-1) = 4 + 3
f(-1) = 7
x = 0:
f(0) = -4(0) + 3
f(0) = 0 + 3
f(0) = 3
x = 1:
f( 1 ) = -4( 1 ) + 3
f( 1 ) = -4 + 3
f( 1 ) = -1
x = 2:
f(2) = -4(2) + 3
f(2) = -8 + 3
f(2) = -5
Attached is a screenshot of the table containing the same solution displayed in this post.
For this case we have to, by defining properties of powers and roots the following is fulfilled:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
We must rewrite the following expression:
![\sqrt [3] {8 ^ {\frac {1} {4} x}}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B8%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B4%7D%20x%7D%7D)
Applying the property listed we have:
![\sqrt [3] {8 ^ {\frac {1} {4} x}} = 8 ^ {\frac{\frac {1} {4} x} {3} }= 8 ^ {\frac {1} {4 * 3} x} = 8 ^ {\frac {1} {12} x}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B8%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B4%7D%20x%7D%7D%20%3D%208%20%5E%20%7B%5Cfrac%7B%5Cfrac%20%7B1%7D%20%7B4%7D%20x%7D%20%7B3%7D%20%7D%3D%208%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B4%20%2A%203%7D%20x%7D%20%3D%208%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B12%7D%20x%7D)
Using the property again we have to:
![8 ^ {\frac {1} {12} x} = \sqrt [12] {8 ^ x}](https://tex.z-dn.net/?f=8%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B12%7D%20x%7D%20%3D%20%5Csqrt%20%5B12%5D%20%7B8%20%5E%20x%7D)
Thus, the correct option is option C
Answer:
Option C
Your answer would be the one on the bottom left. I recommend the app “Mathaway” that will help you graph problems like this.
Answer:
idk this is actually hard
Step-by-step explanation: