<u>Answer:</u> 1.0 kilograms.
<u>Explanation:</u>
One kilogram is equal to a thousand grams.
Supposing x to be the number of kilograms equal to one thousand and eight grams, we can write it as:
1 kg = 1000 grams
x kg = 1008 grams
To solve for x, we can simply divide 1008 grams by 1000 thousand grams to get the answer.
x = 1008 / 1000
x = 1.008
Rounding this value to the nearest tenth, it will become 1.0 kilograms.
Answer:
Option B. A
Explanation:
From the question given above, the following data were obtained:
C(s) + 2H₂ (g) —> CH₄ (g). ΔH = –74.9 kJ
From the reaction above, we can see that the enthalpy change (ΔH) is negative (i.e –74.9 KJ) which implies that the heat content of the reactants is greater than the heat content of the products. Thus, the reaction is exothermic reaction.
For an exothermic reaction, the energy profile diagram is drawn in such a way that the heat content of reactants is higher than the heat content of products because the enthalpy change
(ΔH) is always negative.
Thus, diagram A (i.e option B) gives the correct answer to the question.
Answer:
A solution of acetic acid that is 60.0% HC₂H₃O₂ (by mass) indicates that it contains 60.0 g of acetic acid and 100.0 g of water.
Explanation:
A percentage is a way of expressing an amount as a fraction of 100. The mass percentage corresponds to physical units of the solutions and they allow to establish more precisely the concentration of the solutions and express them in terms of percentages.
Mass percentage indicates the amount in grams of solute per 100 grams of solution.
So a solution of acetic acid that is 60.0% HC₂H₃O₂ (by mass) indicates that it contains 60.0 g of acetic acid and 100.0 g of water.
They are all in forest climax means forest
Answer:
Specific heat of ethyl chloride in gas and liquid phases, enthalpy of vaporization and specific heat of solid surface.
Explanation:
In order to determine the final temperature, the heat lost by the chloride needs to be found. This would require the specific heat in both phases and the enthalpy of vaporization. (you will use q=mc(delta)T and q=m(delta)H)
Then the energy gained by the surface needs to be found. This will require the specific heat in order to use the q=mc(delta)T equation.