Answer:
cot(-270) = 0
Step-by-step explanation:
given cot ( -270)
In trigonometry function we will use cot ( -x) = -cotx
so cot (-270) = - cot270
<u>trigonometry table</u>
II quadrant I quadrant ( All positive)
sin θ 90+θ 90 -θ
<u> cosec</u> θ <u> 180-θ 360+θ</u>
third quadrant fourth quadrant
tan θ 180+θ cos θ 270+θ
cot θ 270 - θ sec θ 360-θ
Given
cot (-270) = -cot ( 270)
= - cot ( 180 + 90) (third quadrant above table)
= -cot 90 =0 ( cot θ positive in third quadrant
<u>Final answer</u>:-
cot(-270) =0
Answer:
42:60
Step-by-step explanation:
For this case we must find the product of the following expression:
![\sqrt [3] {5} * \sqrt {2}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B5%7D%20%2A%20%5Csqrt%20%7B2%7D)
By definition of properties of powers and roots we have:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
We rewrite the expression using the lowest common index of 6, then:

We rewrite the terms in an equivalent way:

We rewrite the expression using the property mentioned:
![\sqrt [6] {5 ^ 2} * \sqrt [6] {2 ^ 3} =](https://tex.z-dn.net/?f=%5Csqrt%20%5B6%5D%20%7B5%20%5E%202%7D%20%2A%20%5Csqrt%20%5B6%5D%20%7B2%20%5E%203%7D%20%3D)
We combine using the product rule for radicals:
![\sqrt [n] {a} * \sqrt [n] {b} = \sqrt [n] {ab}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%7D%20%2A%20%5Csqrt%20%5Bn%5D%20%7Bb%7D%20%3D%20%5Csqrt%20%5Bn%5D%20%7Bab%7D)
So:
![\sqrt [6] {5 ^ 2 * 2 ^ 3} =\\\sqrt [6] {25 * 8} =\\\sqrt[6]{200}](https://tex.z-dn.net/?f=%5Csqrt%20%5B6%5D%20%7B5%20%5E%202%20%2A%202%20%5E%203%7D%20%3D%5C%5C%5Csqrt%20%5B6%5D%20%7B25%20%2A%208%7D%20%3D%5C%5C%5Csqrt%5B6%5D%7B200%7D)
ANswer:
Option b
Simplifying
-16 + 23 (-4) + -3
Multiply 23 x -4
Add -16 + -92=-108
Add -108-3= -111 <------Answer
Answer:
False
Step-by-step explanation:
The two factors must be negative to result in the negative sum of -35 when added.