a.) Asp and Lys
Asp will elute first from the column because it has less positively charged functional groups than Lys.
b.) Arg and Met
Met will elute first from the column because it has less positively charged functional groups than Lys.
c.) Glu and Val
Glu will elute first from the column because it has more negativity functional groups than Lys and will be not be much retained by the -SO₃⁻ groups from the ion-exchange coloumn.
d.) Gly and Val
Gly will elute first from the column because Lys have a longer alkyl chain which will be attracted by the strongly hydrophobic backbone for the resin.
e.) Ser and Ala
Ser will be eluted first from the column because Ala alkyl chain will be more attracted by the strongly hydrophobic backbone for the resin. Ser have an -OH group which will decrease the hydrophobicity of the alkyl chain and will not be so much retained on the column.
Answer:
Explanation:
Groundwater is stored in the open spaces within rocks and within unconsolidated sediments. Rocks and sediments near the surface are under less pressure than those at significant depth and therefore tend to have more open space. For this reason, and because it’s expensive to drill deep wells, most of the groundwater that is accessed by individual users is within the first 100 m of the surface. Some municipal, agricultural, and industrial groundwater users get their water from greater depth, but deeper groundwater tends to be of lower quality than shallow groundwater, so there is a limit as to how deep we can go.
Answer:
A. How the concentration of the reactants affects the rate of a reaction
Explanation:
Let's consider a generic reaction.
A + B ⇒ Products
The generic rate law is:
rate = k × [A]ᵃ × [B]ᵇ
where,
- rate: rate of the reaction
- [A] and [B]: molar concentrations of the reactants
As we can see, the rate law shows how the concentration of the reactants affects the rate of a reaction.
Buckminster fullerene C60
Answer:
Explanation:
photosynthesis
the given chemical reaction is photosynthesis.
During photosynthesis carbon dioxide absorbed by plants reacts with water in presence of sunlight to give glucose and oxygen.