Answer: 625 kj/mol
Explanation:
As shown below this expression gives the activation energy of the reverse reaction:
EA reverse reaction = EA forward reaction + | enthalpy change |
1) The activation energy, EA is the difference between the potential energies of the reactants and the transition state:
EA = energy of the transition state - energy of the reactants.
2) The activation energy of the forward reaction given is:
EA = energy of the transition state - energy of [ NO2(g) + CO(g) ] = 75 kj/mol
3) The negative enthalpy change - 250 kj / mol for the forward reaction means that the products are below in the potential energy diagram, and that the potential energy of the products, [NO(g) + CO2(g) ] is equal to 375 kj / mol - 250 kj / mol = 125 kj/mol
4) For the reverse reaction the reactants are [NO(g) + CO2(g)], and the transition state is the same than that for the forward reaction.
5) The difference of energy between the transition state and the potential energy of [NO(g) + CO2(g) ] will be the absolute value of the change of enthalpy plus the activation energy for the forward reaction:
EA reverse reaction = EA forward reaction + | enthalpy change |
EA reverse reaction = 375 kj / mol + |-250 kj/mol | = 375 kj/mol + 250 kj/mol = 625 kj/mol.
And that is the answer, 625 kj/mol
I think learn to drive is the most important part
Answer:

Explanation:
In order to answer this question, we need to be familiar with the law of freezing point depression. The law generally states that mixing our solvent with some particular solute would decrease the freezing point of the solvent.
This may be expressed by the following relationship:

Here:
is the change in the freezing point of the solvent given its initial and final freezing point temperature values;
is the van 't Hoff factor (i = 1 for non-electrolyte solutes and i depends on the number of moles of ions released per mole of ionic salt);
is the freezing point depression constant for the solvent;
is molality of the solute, defined as a ratio between the moles of solute and the mass of solvent (in kilograms).
We're assuming that you meant 1.7-molal solution, then:

Given ethylene glycol, an organic non-electrolyte solute:

The freezing point depression constant:

Initial freezing point of pure water:

Rearrange the equation for the final freezing point and substitute the variables:

Atomic Mass will be 23 the new magnesium formed will be its isotope of magnesium.
We know that,
In stable condition
Number of electrons = Number of protons
Atomic number represents number of proton .
So, here number of proton is 12
Therefore, number of electron is 12
We know that -
Atomic mass = number of protons +Number of neutron
So if magnesium loses one neutron i.e. new number of neutron is 11
then its atomic mass changes.
New atomic mass will be
Atomic mass = 
Atomic mass = 23
This new element with atomic mass 23 and atomic number 12 is the isotope of magnesium.
To know more about isotopes
brainly.com/question/11291241
#SPJ4