Pressure, volume, temperature, # moles Pressure, volume and temperature, and moles of gas
Hope that helps!!!!
Answer: Colligative properties are those properties of solutions that are dependent on the concentration of the solutes in the solution.
Colligative properties has to do with solutions, that is, solutes that are dissolved in solvents. Examples of colligative properties are: freezing point depression, vapour pressure lowering, boiling point elevation and osmotic pressure. Colligative properties do not depend on the identity of the solutes, this implies that the effect of colligative properties are uniform across all solutions. For example, the freezing point depression of any solution will depend on the concentration of solutes that are dissolve in solution.
1)Identify the atoms that are participating in a covalent bond.
2)Draw each atom by using its element symbol. The number of valence electrons is shown by placing up to two dots on each side of the element symbol, with each dot representing a single valence electron.
3)Predict the number of covalent bonds each atom will make using the octet rule.
4)Draw the bonding atoms next to each other, showing a single covalent bond as either a pair of dots or a line representing a shared valence electron pair. If the molecule forms a double or triple bond, use two or three lines to represent the shared electron pairs, respectively.
Answer:
36.63 Torr
Explanation:
You need to use two expressions, one for pressure and the other with the relation of density and height of the column.
For the pressure:
P = h * d * g (1)
h is height.
d density
g gravity
The second expression put a relation between the densities and height of the column so:
d1/d2 = h1/h2 (2)
let 1 be the phthalate, and 2 the mercury.
Let's calculate first the relation of density:
d1/d2 = 13.53 / 1.046 = 12.93
Now with the first expression, we can calculate the pressure so:
P = hdg
We have two compounds so,
h1d1g = h2d2g ---> gravity cancels out
From here, we can solve for h2:
h2 = h1*(d1/d2)
replacing:
h2 = 459 / 12.53
h2 = 36.63 mm
1 mmHg is 1 torr, therefore the pressure of the gas in Torr would be 36.63 Torr