I believe the answer is 3 - He hypothesized that all substances can be broken down into a smallest part called the atom.
Answer:
4,38%
small molecular volumes
Decrease
Explanation:
The percent difference between the ideal and real gas is:
(47,8atm - 45,7 atm) / 47,8 atm × 100 = 4,39% ≈ <em>4,38%</em>
This difference is considered significant, and is best explained because argon atoms have relatively <em>small molecular volumes. </em>That produce an increasing in intermolecular forces deviating the system of ideal gas behavior.
Therefore, an increasing in volume will produce an ideal gas behavior. Thus:
If the volume of the container were increased to 2.00 L, you would expect the percent difference between the ideal and real gas to <em>decrease</em>
<em />
I hope it helps!
Answer:
liquid and solid
Explanation:
Research scientists of scotland discovered a new state of the matter which consists of both liquid and solid. Scientifically there are three states of matter i.e Solid, Liquid and Gas, but now there are chances of one more state of matter which which consists of more than one state of the existing three states of the matter which have both liquid and solid state.
This discovery took place with the help of artificial intelligence of today's world which is transforming the world day by day.
The State is considered to be true as it is thermodynamically stable state of the matter.
Nitrogen can make bonds with other atoms.. Typically though it only makes 3 bonds, so it fills its octet.
Answer:
0.00268 M
Explanation:
To find the new molarity, you need to (1) find the moles of CuSO₄ (via the molarity equation using the beginning molarity and volume) and then (2) find the new molarity (using the moles and combined volume). Your final answer should have 3 sig figs to match the given values.
<u>Step 1:</u>
3.00 mL / 1,000 = 0.00300 L
Molarity = moles / volume (L)
0.0250 M = moles / 0.00300 L
(0.0250 M) x (0.00300 L) = moles
7.50 x 10⁻⁵ = moles
<u>Step 2:</u>
25.0 mL / 1,000 = 0.0250 L
0.0250 L + 0.00300 L = 0.0280 L
Molarity = moles / volume (L)
Molarity = (7.50 x 10⁻⁵ moles) / (0.0280 L)
Molarity = 0.00268 M