<span>1.86 moles of hydrogen gas.
Since what the HCl is reacting with hasn't been mentioned, I'll assume zine. In that case, the balanced reaction is
Zn + 2HCl ==> ZnCl2 + H2
So for every 2 moles of HCl used, 1 mole of hydrogen gas will be generated. So let's figure out how many moles of HCl we have and then divide by 2.
Molarity is defined as moles/liter. So a 2.75 M HCl solution has 2.75 moles of HCl per liter. So the total number of moles we have is:
2.75 mole/L * 1.35 L = 3.7125 mol
And since we get 1 mole H2 per mole of HCl, we get:
3.7125 mol / 2 = 1.85625 mol
Rounding to 3 significant figures gives us 1.86 moles of hydrogen gas.</span>
G(2)=2
For this, you can plug in 2 everywhere you see an n. So the equation will read:
g(2)=g(2-1)+2 -> g(2)=g(1)+2. Since we are given g(1)=0, we can plug in 0 where we see g(1). The equation is now. g(2)=0+2. So, g(2)=2.
Answer:
HCO₂
Explanation:
From the information given:
The mass of the elements are:
Carbon C = 26.7 g; Hydrogen H = 2.24 g Oxygen O = 71.1 g
To determine the empirical formula;
First thing is to find the numbers of moles of each atom.
For Carbon:

For Hydrogen:

For Oxygen:

Now; we use the smallest no of moles to divide the respective moles from above.
For carbon:

For Hydrogen:

For Oxygen:

Thus, the empirical formula is HCO₂
Since transition metals with partially filled d orbitals have color when in solution. Therefore which ever solution has some color will likely contain a transition metal with a partially filled d orbital.
an example of this is solution with Cu²⁺ will have a blue tint to it.