Answer:
1. All red calves i.e. RR
2. All roan calves i.e RW
3. 2 red calves (RR) and two roan calves (RW)
Explanation:
According to this question, a gene coding for fur colour in cattle is involved. Red alleles (R) and white alleles (W) are co-dominant to produce a roan cattle (RW). The possible traits of the following crosses are (see attached punnet square):
1) A red bull (RR) is mated to a red (RR) cow: All red calves i.e. RR
2) A red (RR) bullis mated with white (WW) cow: All roan calves i.e RW
3) A roan bull (RW) is mated with red (RR) cow: 2 red calves (RR) and two roan calves (RW).
Answer:
D
Explanation:
I explained how to do it on your other problem so look there :)
The best way to determine the number of atoms of arsenic in the sample will be to multiply 2.3 by Avagadro's number.
This is because Avagadro's number is the number of particles one mole of any substance has, and its value is 6.02 x 10²³
If the number of moles of a substance are known, then multiplying by Avagadro's number will give the number of particles. In this case, this is 1.38 x 10²⁴.
1. The molar mass of the unknown gas obtained is 0.096 g/mol
2. The pressure of the oxygen gas in the tank is 1.524 atm
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
<h3>1. How to determine the molar mass of the gas </h3>
- Rate of unknown gas (R₁) = 11.1 mins
- Rate of H₂ (R₂) = 2.42 mins
- Molar mass of H₂ (M₂) = 2.02 g/mol
- Molar mass of unknown gas (M₁) =?
R₁/R₂ = √(M₂/M₁)
11.1 / 2.42 = √(2.02 / M₁)
Square both side
(11.1 / 2.42)² = 2.02 / M₁
Cross multiply
(11.1 / 2.42)² × M₁ = 2.02
Divide both side by (11.1 / 2.42)²
M₁ = 2.02 / (11.1 / 2.42)²
M₁ = 0.096 g/mol
<h3>2. How to determine the pressure of O₂</h3>
From the question given above, the following data were obtained:
- Volume (V) = 438 L
- Mass of O₂ = 0.885 kg = 885 g
- Molar mass of O₂ = 32 g/mol
- Mole of of O₂ (n) = 885 / 32 = 27.65625 moles
- Temperature (T) = 21 °C = 21 + 273 = 294 K
- Gas constant (R) = 0.0821 atm.L/Kmol
The pressure of the gas can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
Divide both side by V
P = nRT / V
P = (27.65625 × 0.0821 × 294) / 438
P = 1.524 atm
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
Learn more about ideal gas equation:
brainly.com/question/4147359