<span>
In layman's term: </span>like charges don't attract while opposite charges do<span>electrostatic forces between point A( which is charged) and point B (which is also charged) are proportional to the charge of point A and point B. </span><span>there is also something else about this law that I don't quite remember.</span>
<span>___________________________________________________</span>
<span />Here is the formula:
<span>F = k x Q1 x Q2/d^<span>2</span></span>
<span>What the formula means:</span>
F=force between charges
Q1 and Q2= amount of charge
d=distance between these two charges
k= Coulombs constant (proportionally constant)
________________________________________________
I think that about covers it and hopefully this helped.
Answer:
Approximately
.
Explanation:
Since the result needs to be accurate to three significant figures, keep at least four significant figures in the calculations.
Look up the Rydberg constant for hydrogen:
.
Look up the speed of light in vacuum:
.
Look up Planck's constant:
.
Apply the Rydberg formula to find the wavelength
(in vacuum) of the photon in question:
.
The frequency of that photon would be:
.
Combine this expression with the Rydberg formula to find the frequency of this photon:
.
Apply the Einstein-Planck equation to find the energy of this photon:
.
(Rounded to three significant figures.)
Answer:
the small one will have greater acceleration
Explanation:
force and mass are inversely proportional. force and acceleration are directly proportional. which means greater mass have smaller acceleration and smaller mass has greater acceleration. this is due to newtons second law of motion.