Answer:
The volume of water evaporated is 199mL
Explanation:
Concentration is calculated with the following formula

where n is the number of moles of solute and V is the volume of the solution (in this case is the same as the solvent volume) in liters.
So we isolate the variable n to know the amount of moles, using the volume given in liters


Now, we isolate the variable V to know the new volume with the new concentration given.

Finally, the volume of water evaporated is the difference between initial and final volume.

The maximum pressure variations the human ear can withstand above and below atmospheric pressure is around 30 pa. the normal atmospheric pressure is around 101325 pa. hence the variation in the maximum pressure for human ear is very small as compared to the atmospheric pressure. if the ear is exposed to a pressure greater than this , it can cause permanent damage to the ear.
Mechanical waves transfer energy by inducing vibrations in the propagation medium.
Answer:
3.14946 rad/s
Explanation:
= Intial moment of inertia
= Final moment of inertia
= Initial angular velocity
= Final angular velocity = 

In this system the angular momentum is conserved

The angular velocity when the diver left the board is 3.14946 rad/s
Answer:
i. 6.923 V
ii. The e.m.f. = 22.5 V
Explanation:
i. The given parameters are;
Length of potentiometer = 1 m
The resistance of the potentiometer = 10 Ω
The e. m. f. of the attached cell = 9 V
The current, I flowing in the circuit = e. m. f/(Total resistance)
The current, I flowing in the circuit = 9 V/(10 + 3) = 9/13 A
The potential difference, p.d. across the 1 m potentiometer wire = I × Resistance of the potentiometer wire
The p.d. across the potentiometer wire = 9/13×10 = 90/13 = 6.923 V
ii) Given that the 1 m potentiometer wire has a resistance of 10 Ω, 75 cm which is 0.75 m will have an e.m.f. given by the following relation;

Where:
E = e.m.f. of the balance point cell
= Resistance of 75 cm of potentiometer wire = 0.75×10 = 7.5 Ω
= Resistance of the cell in the circuit = 3 Ω
V = e.m.f. attached cell = 9 V

E = 7.5*3 = 22.5 V
The e.m.f. = 22.5 V