Answer:
They are both extremely hot, they both produce a form of light, they both have/use fire(typically)
Explanation:
Distance fallen = 1/2 ( V initial + V final ) *t
We know
a = -9.8 m/s2
t=120s
To find distance fallen, we need to find V final
Use the equation
V final = V initial + a*t
Substitute known values
V final = 0 + (-9.8)(120)
V final = -1176 m/s
Then plug known values to distance fallen equation
Distance fallen = 1/2 ( 0 + 1176 )(120)
= 1/2(1776)(120)
=106,560 m
This way plugging into distance equation is actually the long way. A faster way is to plug the values into
Distance fallen = V initial * t + 1/2(a*t)
We won't need to find V final using another equation.
But anyways, good luck!
Answer:
1. False
2. True
3. True
Explanation:
1- False —> The relation between electric potential and electric field is given such that

Therefore, for a uniform E field, electric potential is linearly proportional to the distance.
2- True —> The electric field lines always cross the equipotential lines perpendicularly.
3- True —> In order to be a potential difference, one source of electric field is enough. The electric potential will decrease radially according to the following formula:

There is no test charge in the formula, only the source charge. Even when there is no test charge, the potential difference between points in space can exist.
Answer:
3.97305 m
Explanation:
a = Acceleration due to gravity = 9.81 m/s²
If a jump lasts for 1.8 seconds this means that from the moment when the person leaves the ground till the person touches the ground again it takes 1.8 seconds. So, maximum height reached will be at half the time of the jump i.e., 0.9 seconds.
u = Initial velocity = 0
Equation of motion

So, height of the jump is 3.97305 m.
It acquires a charge through electrons.
Hope this helps!!!^_~!!!