Answer:
True.
Explanation:
The density of an object is given by its mass divided by its volume. It can be given as follows :

It can be seen that the density of an object is directly proportional to its mass. It means if the mass of an object increase, its density will also increase. Hence, the given statement is true.
Answer:
a force that is able to act at a distance
Explanation:
:)
There is an indirect relationship between length and frequency. The longer the length the pipe has, the higher frequency it is. The shorter the length the pipe has, the lower frequency it is.
<u>Explanation:</u>
The four properties of the string that affect its frequency are length, diameter, tension, and density. These properties are described below: When the length of a string is changed, it will vibrate with a different frequency. Shorter strings have higher frequency and therefore higher pitch.
The longer the tube is the lower the pitch of the note that it can emit. When a tube is heated it expands and so is longer! As the gas in the tube gets warmer the molecules move faster, that means they can carry the vibrations of the sound wave more rapidly and so the pitch goes up.
Answer:
2.5m/s^2
Explanation:
Step one:
given
distance = 20meters
time = 2 seconds
initial velocity u= 0m/s
let us solve for the final velocity
velocity = distance/time
velocity= 20/2
velocity= 10m/s

divide both sides by 40

Charles Law
Explanation:
Step 1:
It is given that the original volume of the gas is 250 ml at 300 K temperature and 1 atmosphere pressure. We need to find the volume of the same gas when the temperature is 350 K and 1 atmosphere pressure.
Step 2:
We observe that the gas pressure is the same in both the cases while the temperature is different. So we need a law that explains the volume change of a gas when temperature is changed, without any change to the pressure.
Step 3:
Charles law provides the relationship between the gas volume and temperature, at a given pressure
Step 4:
Hence we conclude that Charles law can be used.