The electric potential energy of the electron depends on the potential difference applied between the two ends of the cable. Indeed, the electric potential energy of a charge is given by

where q is the magnitude of the charge, while

is the potential difference applied. So, U depends on

.
An effect whereby a mass moving in a rotating system experiences a force (the Coriolis force ) acting perpendicular to the direction of motion and to the axis of rotation. On the earth, the effect tends to deflect moving objects to the right in the northern hemisphere and to the left in the southern and is important in the formation of cyclonic weather systems.
Solo dígales cómo se siente, dígales que no está contento porque está triste y no sabe qué hacer al respecto, que está deprimido, y que solo quiere que las cosas mejoren.
Answer:
300000 J / 400 J/s = 750 s = 12.5 minutes
Explanation:
Answer:
V = 192 kV
Explanation:
Given that,
Charge, 
Distance, r = 0.3 m
We need to find the electric potential at a distance of 0.3 m from a point charge. The formula for electric potential is given by :

So, the required electric potential is 192 kV.