no, work is = force * distance or displacement
Answer:
(C) Average Velocity = 25 m/s due North
Use this formula to find your answer...
Determine the frequency of a clock waveform whose period is 2us or (micro) and 0.75ms
frequency (f)=1/( Time period).
Frequency of 2 us clock =1/2*10^-6 =10^6/2 =500000Hz =500 kHz.
Frequency of 0..75ms clock =1/0.75*10^-3 =10^3/0.75 =1333.33Hz =1.33kHz.
Answer:
C
Explanation:
- Let acceleration due to gravity @ massive planet be a = 30 m/s^2
- Let acceleration due to gravity @ earth be g = 30 m/s^2
Solution:
- The average time taken for the ball to cover a distance h from chin to ground with acceleration a on massive planet is:
t = v / a
t = v / 30
- The average time taken for the ball to cover a distance h from chin to ground with acceleration g on earth is:
t = v / g
t = v / 9.81
- Hence, we can see the average time taken by the ball on massive planet is less than that on earth to reach back to its initial position. Hence, option C
Answer:
Fractional error = 0.17
Percent error = 17%
F = 112 ± 19 N
Explanation:
Plug in the values to find the force:
F = (3.5 kg) (20 m/s)² / (12.5 m) = 112 N
Find the fractional error:
ΔF/F = Δm/m + 2Δv/v + Δr/r
ΔF/F = 0.1/3.5 + 2(1/20) + 0.5/12.5
ΔF/F = 0.17
Multiply by 100% to find the percent error:
ΔF/F × 100% = 17%
Solve for the absolute error:
ΔF = 0.17 × 112 N = 19 N
Therefore, the force is:
F = 112 ± 19 N