Divergent boundaries occur along spreading centers where plates are moving apart and new crust is created by magma pushing up from the mantle. Picture two giant conveyor belts, facing each other but slowly moving in opposite directions as they transport newly formed oceanic crust away from the ridge crest.
Answer:
B.) An atom of arsenic has one more valence electron and more electron shells than an atom of silicon, so the conductivity decreases because the arsenic atom loses the electron.
Explanation:
Silicon is located in the 3rd row and 14th column in the periodic table. Arsenic is located in the 4th row and 15th column in the periodic table. This means that arsenic has one more valence electron than silicon. Since arsenic is located one row down from silicon, its valence electrons occupy higher energy orbitals.
Silicon maintains a crystal-like lattice structure. Each silicon atom is covalently connected to assume this shape. When silicon gains one extra electron from arsenic, it experiences n-type doping. This new electron is not tightly bound in the lattice structure. This allows it to move more freely and conduct more electricity. This can also be explained using band gaps. Silicon, which previously had an empty conduction band, now has one electron in this band. This lowers the band gap between the conduction and valence bands and increases conductivity.
Answer:
41.17g
Explanation:
We are given the following parameters for Flourine gas(F2).
Volume = 5.00L
Pressure = 4.00× 10³mmHG
Temperature =23°c
The formula we would be applying is Ideal gas law
PV = nRT
Step 1
We find the number of moles of Flourine gas present.
T = 23°C
Converting to Kelvin
= °C + 273k
= 23°C + 273k
= 296k
V = Volume = 5.00L
R = 0.08206L.atm/mol.K
P = Pressure (in atm)
In the question, the pressure is given as 4.00 × 10³mmHg
Converting to atm(atmosphere)
1 mmHg = 0.00131579atm
4.00 × 10³ =
Cross Multiply
4.00 × 10³ × 0.00131579atm
= 5.263159 atm
The formula for number of moles =
n = PV/RT
n = 5.263159 atm × 5.00L/0.08206L.atm/mol.K × 296K
n = 1.0834112811moles
Step 2
We calculate the mass of Flourine gas
The molar mass of Flourine gas =
F2 = 19 × 2
= 38 g/mol
Mass of Flourine gas = Molar mass of Flourine gas × No of moles
Mass = 38g/mol × 1.0834112811moles
41.169628682grams
Approximately = 41.17 grams.
Answer:
A sample of helium gas has a volume of 620mL at a temperature of 500 K. If we ... to 100 K while keeping the pressure constant, what will the new volume be?
Explanation:
The formal charge of H = +1, because F in compounds can have only -1.