Answer:
The first row of elements fits in period <u>6</u>, after the element <u>lanthanum (La)</u>. The second row of elements fits in period <u>7</u>, after the element <u>actinium (Ac). </u>
I hope this helps!
I think the half of 1293 its the mass ? maybe idk I just tried
To solve this problem,
we can use the Henderson-Hasselbalch Equation which relates the pH to the measure
of acidity pKa. The equation is given as:<span>
<span>pH = pKa + log ([base]/[acid]) ---> 1</span></span>
Where,
[base] = concentration
of C2H3O2
in molarity or moles
<span>[acid] = concentration of HC2H3O2 in molarity or moles</span>
For the sake of easy calculation, let us assume that:
[base] = 1
[acid] = x
<span>
Therefore using equation 1,
4.24 = 4.74 + log (1 / x)
<span>log (1 / x) = - 0.5
1 / x = 0.6065 </span></span>
x =
1.65<span>
The required ratio of C2H3O2 /HC2H3O2 <span>
is 1:1.65 or 3:5. </span></span>
The branch of chemistry that the chemist might use will be the branch of <em>organic chemistry</em>. This is because gasoline is an organic compound. We can say that a compound is organic if it contains a carbon atom. Gasoline is composed of long chains of alkanes (hydrocarbons with single bonds) ranging from 4 carbon atoms to 12 carbon atoms.
Answer:
- <u><em>Sodium chloride</em></u>
Explanation:
The attached graph with a green and a red arrow facilitates the understanding of this explanation.
To read the <em>solubility </em>on the <em>graph</em>, you can start with the temperature, on the x-axis.
The red vertical arrow shows how, departing from the <em>40ºC temperature</em> on the x-axis, you intersect the<em> solutibility curve </em>of sodium chloride at a height (y-axis) corresponding to <em>60 g/100cm³ of water</em> (follow the green horizontal arrow).
Hence, <em>sodium chloride is the salt that can dissolve at a concentration of about 60g/100cm³ of water at 40ºC.</em>