Answer:
When two distinct elements are chemically combined—i.e., chemical bonds form between their atoms—the result is called a chemical compound. Most elements on Earth bond with other elements to form chemical compounds, such as sodium (Na) and Chloride (Cl), which combine to form table salt (NaCl).
Answer:
Kinetic energy is the energy that an object has because of its motion. The molecules in a substance have a range of kinetic energies because they don't all move at the same speed. As a substance absorbs heat the particles move faster so the average kinetic energy and therefore the temperature increases.
<u>Answer:</u> The standard free energy change of formation of
is 92.094 kJ/mol
<u>Explanation:</u>
We are given:

Relation between standard Gibbs free energy and equilibrium constant follows:

where,
= standard Gibbs free energy = ?
R = Gas constant = 
T = temperature = ![25^oC=[273+25]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5DK%3D298K)
K = equilibrium constant or solubility product = 
Putting values in above equation, we get:

For the given chemical equation:

The equation used to calculate Gibbs free change is of a reaction is:
![\Delta G^o_{rxn}=\sum [n\times \Delta G^o_f_{(product)}]-\sum [n\times \Delta G^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28reactant%29%7D%5D)
The equation for the Gibbs free energy change of the above reaction is:
![\Delta G^o_{rxn}=[(2\times \Delta G^o_f_{(Ag^+(aq.))})+(1\times \Delta G^o_f_{(S^{2-}(aq.))})]-[(1\times \Delta G^o_f_{(Ag_2S(s))})]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28Ag%5E%2B%28aq.%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28S%5E%7B2-%7D%28aq.%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28Ag_2S%28s%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![285.794=[(2\times 77.1)+(1\times \Delta G^o_f_{(S^{2-}(aq.))})]-[(1\times (-39.5))]\\\\\Delta G^o_f_{(S^{2-}(aq.))=92.094J/mol](https://tex.z-dn.net/?f=285.794%3D%5B%282%5Ctimes%2077.1%29%2B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28S%5E%7B2-%7D%28aq.%29%29%7D%29%5D-%5B%281%5Ctimes%20%28-39.5%29%29%5D%5C%5C%5C%5C%5CDelta%20G%5Eo_f_%7B%28S%5E%7B2-%7D%28aq.%29%29%3D92.094J%2Fmol)
Hence, the standard free energy change of formation of
is 92.094 kJ/mol
Answer:
Volume will goes to increase.
Explanation:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
So when the temperature goes to increase the volume of gas also increase. Higher temperature increase the kinetic energy and molecules move randomly every where in given space so volume increase.
Now we will put the suppose values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 4.5 L × 348 K / 298 k
V₂ = 1566 L.K / 298 K
V₂ = 5.3 L
Hence prove that volume increase by increasing the temperature.
<h2>♨ANSWER♥</h2>
pl (25*C)
Arginine -----> 10.76
Glutamic -----> 3.08
Asparagine -----> 5.43
Tyrosine -----> 5.63
<u>☆</u><u>.</u><u>.</u><u>.</u><u>hope this helps</u><u>.</u><u>.</u><u>.</u><u>☆</u>
_♡_<em>mashi</em>_♡_