Answer:
1M
Explanation:
The molarity of a substance is defined as the number of moles of the substance divided by how many liters the solution is. NaOH has a molar mass of about 40 grams, meaning that 10 grams of it would be 0.25 moles. 0.25/0.25= a molarity of 1.
Hope this helps!
The molar mass of NO₂ is 46.0 g/mol
The molar mass of Pb (NO₃)₂ is 331.2 g/mol
First there is a need to find the number of moles of NO₂ via the stoichiometry of reaction:
2Pb(NO₃)₂ → 2PbO (s) + 4NO₂ (g) + 02 (g)
2 × 331.2 g = 4 × 46.0 g
16.87 g = x (mass of NO₂)
mass of NO₂ = 16.87 × 4 × 46 / 2 × 331.2
mass of NO₂ = 3104.08 / 662.4
mass of NO₂ = 4.686 g of NO₂
Now the number of moles are:
1 mole NO₂ = 46.0 g
x moles of NO₂ = 4.686 g
4.686 × 1 / 46.0 = 0.101 moles of NO₂
1 mole = 22.4 L (at STP)
0.101 moles of NO₂ = 0.101 × 22.4 / 1
= 2.26 L
Answer:
The elements toward the bottom left corner of the periodic table are the metals that are the most active in the sense of being the most reactive.
Answer:
18.0 g H₂O
Explanation:
To find the mass of water (H₂O), you need to (1) convert grams O₂ to moles O₂ (via the molar mass), then (2) convert moles O₂ to moles H₂O (via mole-to-mole ratio from equation coefficients), and then (3) convert moles H₂O to grams H₂O (via the molar mass). It is important to arrange the conversions in a way that allows for the cancellation of units. The final answer should have 3 sig figs to match the sig figs of the given value.
Molar Mass (O₂): 2(15.998 g/mol)
Molar Mass (O₂): 31.996 g/mol
Molar Mass (H₂O): 2(1.008 g/mol) + 15.998 g/mol
Molar Mass (H₂O): 18.014 g/mol
2 H₂ + 1 O₂ -----> 2 H₂O
16.0 g O₂ 1 mole 2 moles H₂O 18.014 g
--------------- x ---------------- x --------------------- x ----------------- = 18.0 g H₂O
31.996 g 1 mole O₂ 1 mole
Butane is C₄H₁₀.

The balanced equation is 2 C₄H₁₀ + 13 O₂ <span>→</span> 8 CO₂ + 10 H₂O.