There are six electrons in the covalent bonds.
Two N atoms would be :N:· + ·:N:
An N₂ molecule would be :N:::N: or :N≡N:
This gives each N atom an octet of eight electrons in its valence shell.
<h3>
Answer:</h3>
0.90J/g°C
<h3>
Explanation:</h3>
We are given:
Mass of Aluminium = 10 g
Quantity of heat = 677 Joules
Change in temperature = 125°C - 50°C
= 75°C
We are required to calculate the specific heat capacity of Aluminium
But, Quantity of heat = Mass × specific heat × Change in temperature
Q = mcΔt
Rearranging the formula;
c = Q ÷ mΔt
= 677 J ÷ (10 g × 75°C)
= 677 J ÷ 750g°C
= 0.903 J/g°C
= 0.90J/g°C
Thus, the specific heat capacity of Aluminium is 0.90J/g°C
The first reaction is a synthesis reaction (A+B -> AB)
Answer:
15.4 g of Zn₃(PO₄)₂ are produced
Explanation:
Given data:
Mass of zinc phosphate formed = ?
Volume of zinc nitrate = 48.1 mL (0.05 L)
Molarity of zinc nitrate = 2.18 M
Solution:
Chemical equation:
3Zn(NO₃)₂ + 2K₃PO₄ → Zn₃(PO₄)₂ + 6KNO₃
Moles of zinc nitrate:
Molarity = number of moles / volume in litter
Number of moles = 2.18 M × 0.05 L
Number of moles = 0.109 mol
Now we will compare the moles of zinc phosphate with zinc nitrate from balanced chemical equation:
Zn(NO₃)₂ : Zn₃(PO₄)₂
3 : 1
0.109 : 1/3×0.109 = 0.04 mol
0.04 moles of Zn₃(PO₄)₂ are produced.
Mass of Zn₃(PO₄)₂:
Mass = number of moles × molar mass
Mass = 0.04 mol × 386.1 g/mol
Mass = 15.4 g
Answer:
I don't understand what you are asking