A because the end result of this reaction is a radical created by the oxidation of an aromatic amine's or phenol's ring substituent. The hydroxyl group of a phenol acts as the ring substituent in this situation.
<h3>Which two enzyme types are required for the two-step process of converting cytosine to 5 hmC?</h3>
- The methyl group is transferred to cytosine in the first stage, and it is then hydroxylated in the second step.
- Therefore, a transferase and an oxidoreductase are the two groups of enzymes required.
<h3>Which kind of interaction between proteins and the dextran column material is most likely to take place?</h3>
- Hydrogen bonding because the glucose's OH would form an H-bond with any exposed polar side chains on a protein surface.
<h3>Two out of the four proteins would adhere to a cation-exchange column at what buffer pH? </h3>
- Only positively charged proteins can bind to a cation-exchange column, and this can only happen when the pH is lower than the pI.
- Proteins A and B would both be positively charged at pH 7.0.
To learn more about hydroxyquinoline visit:
brainly.com/question/26102339
#SPJ4
Answer:
7.5 M
Explanation:
In order to find a solution's molar concentration, or molarity, you need to determine how many moles of solute, which in your case is sodium sulfate,
Na
2
SO
4
, you get in one liter of solution.
That is how molarity was defined -- the number of moles of solute in one liter of solution.
So, you know that you have
0.090
moles of solute in
12 mL
of solution. Your goal here will be to scale up this solution by using this information as a conversion factor to help you determine the number of moles of solute present in
The balanced equation would be (1)BaCl2 + (1)H2SO4 --> (1)BaSO4 + (2)HCl2
Then you should know that the coefficients stand for moles.
The thing is I'm not sure if H2SO4 is 35 ml or .200 m.
Also, is this topic stoichiometry?