Answer:
The temperature at which the reaction changes from non-spontaneous to spontaneous is 588.735 K
Explanation:
The spontaneity of a reaction is determined by the change in Gibbs Free Energy,
.

If
is greater than zero, then a reaction is feasible.
If
is less than zero, then a reaction is not feasible.
To determine the temperature at which the reaction changes from non-spontaneous to spontaneous, we should equate the
to zero.
We take
as the limiting condition.

Therefore, the temperature is: 588.735K
Answer:
D all above yes I think it's all above
<h2>
Answer: magnesium sulfide</h2>
<h3>
Explanation:</h3>
MgS → Mg²⁺ + S²⁻
S²⁻ is known as the sulfide ion. That makes MgS Magnesium Sulfide.
For consideration:
magnesium sulfide MgS
magnesium sulfite MgSO₃
magnesium sulfate MgSO₄
magnesium sulfur Mg & S
59.78175 kPa is the pressure inside the container when a cylinder at 48.0 atm pressure and 17.0°C releases 35.0 mL of carbon dioxide gas into a 4.00 L container at 24.0°C.
<h3>What is an ideal gas equation?</h3>
An ideal gas equation states the relationship between the moles of the substance, temperature, pressure, and volume. The ideal gas equation is given as, PV=nRT
Given data:
=48.0 atm
=3T_1=17.0°C
=?
=4.00 L
=24.0°C
= 

= 0.59 atm = 59.78175 kPa
Hence, 59.78175 kPa is the pressure inside the container when a cylinder at 48.0 atm pressure and 17.0°C releases 35.0 mL of carbon dioxide gas into a 4.00 L container at 24.0°C.
Learn more about the ideal gas equation here:
brainly.com/question/22368165
#SPJ1