Answer:
We need 1.714 moles N2
Explanation:
Step 1: Data given
The reaction yield = 87.5 %
Number of moles NH3 produced = 3.00 moles
Step 2: The balanced equation
N2(g)+ 3H2(g) →2NH3(g)
Step 3: Calculate moles N2
For 2 moles NH3 produced we need 1 mol N2 and 3 moles H2
This means, if the yield was 100%, for 3.00 moles NH3 produced , we need 1.5 moles N2
For a 87.5 % yield:
we need more N2, increased by a ratio of 100/87.5.
100/87.5 * 1.5 = 1.714 moles N2
Explanation:
RAM={mass number ×relative abundance (%) + mass number ×relative abundance (%)} ÷100%
so take (91.05×20) +(8.95×22)
In physics, power is the rate of doing work. It is the amount of energy consumed per unit time. Having no direction, it is a scalar quantity. In the SI system, the unit of power is the joule per second (J/s), known as the watt in honour of James Watt, the eighteenth-century developer of the steam engine.
Equilibrium expression is
<u>Explanation:</u>
Equilibrium expression is denoted by Keq.
Keq is the equilibrium constant that is defined as the ratio of concentration of products to the concentration of reactants each raised to the power its stoichiometric coefficients.
Example -
aA + bB = cC + dD
So, Keq = conc of product/ conc of reactant
So from the equation, H₂CO₃+H₂O = H₃O+HCO₃⁻¹
The concentration of pure solid and liquid is considered as 1. Therefore, concentration of H2O is 1.
Thus,
Therefore, Equilibrium expression is