Atomic mass W = 183.84 u.m.a
183.84 g ----------- 6.02x10²⁴ atoms
?? g ---------------- 2.1x10²⁴ atoms
2.1x10²⁴ x 183.84 / 6.02x10²⁴ =
3.860x10²⁶ / 6.02x10²⁴ = 641.30 g
hope this helps!
The Sun<span> is a main-sequence star, and thus generates its energy by </span>nuclear fusion<span> of hydrogen nuclei into helium. In its core, the </span>Sun<span> fuses 620 million metric tons of hydrogen each second.</span>
Answer:
D. 60.3 kilometers per hour
Explanation:
Hello,
In this case, we first compute the miles in kilometres:

Then the minutes in hours:

Finally, the velocity:

Thus, answer is D. 60.3 kilometers per hour
Best regards.
Answer:
58.0 g/mol
Explanation:
The reaction that takes place is:
- MCl₂ + 2AgNO₃ → 2AgCl + M(NO₃)₂
First we <u>calculate how many moles of silver chloride</u> were produced, using its <em>molar mass</em>:
- 6.41 g AgCl ÷ 143.32 g/mol = 0.0447 mol AgCl
Then we <u>convert AgCl moles into MCl₂ moles</u>, using the <em>stoichiometric ratio</em>:
- 0.0447 mol AgCl *
= 0.0224 mol MCl₂
Now we<u> calculate the molar mass of MCl₂</u>, using the original<em> mass of the sample</em>:
- 2.86 g / 0.0224 mol = 127.68 g/mol
We can write the molar mass of MCl₂ as:
- Molar Mass MCl₂ = Molar Mass of M + (Molar Mass of Cl)*2
- 127.68 g/mol = Molar Mass of M + (35.45 g/mol)*2
Finally we<u> calculate the molar mass</u> of M:
- Molar Mass of M = 57 g/mol
The closest option is 58.0 g/mol.
HISTORICAL INTRODUCTION.1<span> EVER since the establishment of the atomic theory by Dalton and Berzelius it was felt among chemists that there must be some relation between the atomic weights of the different elements and their properties. It was recognized very early that there exist groups of elements possessing related chemical and physical properties, and one of the earliest attempts to bring out this point is due to Dobereiner. In 1829 he tried to show that “many elements may be arranged in groups ()f three, in each of which the middle element has an atomic weight equal or approximately equal to the mean of the atomic weights of the two extremes.” As illustrations of this method of arrangement may be mentioned the following groups: Li, Na, K; Ca,Sr,</span>