Answer:
carbon dioxide CO₂
Explanation:
Each gas has a characteristic boiling point. You can separate a random sample of gases by gradually cooling the sample until each component gas liquifies. Some compounds, such as CO₂ never liquify. Instead, they turn directly into solids.
Answer:
The atom economy of ethane in this process is 19.72 %.
What is atom economy?
The conversion efficiency of a chemical reaction in terms of all the atoms involved and the desired products produced is known as atom economy (atom efficiency/percentage).
Explanation:
C₁₀H₂₂ → C₈H₁₈ + C₂H₄
Molecular weight of C₁₀H₂₂ = 142.28
Molecular weight of C₈H₁₈ = 114.228
Molecular weight of C₂H₄ = 28.053
% Atom economy = 
=
= 19.716 %
≈ 19.72 %
To know more about atom economy, click on the link
brainly.com/question/17159753
#SPJ9
Answer:
pH = 7.8
Explanation:
The Henderson-Hasselbalch equation may be used to solve the problem:
pH = pKa + log([A⁻] / [HA])
The solution of concentration 0.001 M is a formal concentration, which means that it is the sum of the concentrations of the different forms of the acid. In order to find the concentration of the deprotonated form, the following equation is used:
[HA] + [A⁻] = 0.001 M
[A⁻] = 0.001 M - 0.0002 M = 0.0008 M
The values can then be substituted into the Henderson-Hasselbalch equation:
pH = 7.2 + log(0.0008M/0.0002M) = 7.8
Yes since for atoms to be of the same element , they must have the same number of protons inside their nucleus . This means that 1- they will all have the same nucleon number ( mass number ) and that 2-they will all have the same number of electrons in their outermost shell which determines the chemical properties of the atom.
Answer:
(D) Na₂SO₄•10H₂O (M = 286).
Explanation:
- The depression in freezing point of water by adding a solute is determined using the relation:
<em>ΔTf = i.Kf.m,</em>
Where, ΔTf is the depression in freezing point of water.
i is van't Hoff factor.
Kf is the molal depression constant.
m is the molality of the solute.
- Since, Kf and m is constant for all the mentioned salts. So, the depression in freezing point depends strongly on the van't Hoff factor (i).
- van't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass.
(A) CuSO₄•5H₂O:
CuSO₄ is dissociated to Cu⁺² and SO₄²⁻.
So, i = dissociated ions/no. of particles = 2/1 = 2.
B) NiSO₄•6H₂O:
NiSO₄ is dissociated to Ni⁺² and SO₄²⁻.
So, i = dissociated ions/no. of particles = 2/1 = 2.
(C) MgSO₄•7H₂O:
MgSO₄ is dissociated to Mg⁺² and SO₄²⁻.
So, i = dissociated ions/no. of particles = 2/1 = 2.
(D) Na₂SO₄•10H₂O:
Na₂SO₄ is dissociated to 2 Na⁺ and SO₄²⁻.
So, i = dissociated ions/no. of particles = 3/1 = 3.
∴ The salt with the high (i) value is Na₂SO₄•10H₂O.
So, the highest ΔTf resulted by adding Na₂SO₄•10H₂O salt.