Explanation:
Given the mass of HCl is ---- 0.50 g
The volume of solution is --- 4.0 L
To determine the pH of the resulting solution, follow the below-shown procedure:
1. Calculate the number of moles of HCl given by using the formula:

2. Calculate the molarity of HCl.
3. Calculate pH of the solution using the formula:
![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
Since HCl is a strong acid, it undergoes complete ionization when dissolved in water.

Thus, ![[HCl]=[H^+]](https://tex.z-dn.net/?f=%5BHCl%5D%3D%5BH%5E%2B%5D)
Calculation:
1. Number of moles of HCl given:

2. Concentration of HCl:

3. pH of the solution:
![pH=-log[H^+]\\=-log(0.003425)\\=2.47](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D%5C%5C%3D-log%280.003425%29%5C%5C%3D2.47)
Hence, pH of the given solution is 2.47.
Electrons and protons, but not neutrons.
Answer:
the one with less thermal energy
Explanation:
thermal energy is heat
NaHCO3 = 22.99 + 1.008 + 16(3) = 83.99 g/mol
<span>Na = 22.99g/83.99 g weight of molecule =.2727 or 27.27% </span>
<span>3.0 g* .2727 = 0.8211 grams of sodium in sample of NaHCO3
</span><span>0.8211 grams Na + 1.266 grams Cl = 2.087 grams</span>