Answer:
7.5 g
Explanation:
There is some info missing. I think this is the original question.
<em>Ammonium phosphate ((NH₄)₃PO₄) is an important ingredient in many fertilizers. It can be made by reacting phosphoric acid (H₃PO₄) with ammonia (NH₃). What mass of ammonium phosphate is produced by the reaction of 4.9 g of phosphoric acid? Be sure your answer has the correct number of significant digits.</em>
<em />
Step 1: Write the balanced equation
H₃PO₄ + 3 NH₃ ⇒ (NH₄)₃PO₄
Step 2: Calculate the moles corresponding to 4.9 g of phosphoric acid
The molar mass of phosphoric acid is 98.00 g/mol.

Step 3: Calculate the moles of ammonium phosphate produced from 0.050 moles of phosphoric acid
The molar ratio of H₃PO₄ to (NH₄)₃PO₄ is 1:1. The moles of (NH₄)₃PO₄ produced are 1/1 × 0.050 mol = 0.050 mol.
Step 4: Calculate the mass corresponding to 0.050 moles of ammonium phosphate
The molar mass of ammonium phosphate is 149.09 g/mol.

Answer:
The correct answer is Option A (There is no magnetic flux through the wire loop.)
Explanation:
Magnetic flux measures the entire magnetic field that passes through the wire loop.
The right hand rule can be demonstrated on how magnetic flux is generated through the moving current in the wire loop. The magnetic flux through the wire loop will decrease as it moves upward through the magnetic field region.
If the direction of the vector area of the wire loop is to the right, and the switch is closed, it will push the magnetic flux to the right which will now be increased due to an equal increase in the current in the wire loop. But, when the switch is open, this will halt the movement of current through the wire loop thus affecting the generation of magnetic field. This would make the magnetic flux to be zero.
The reaction that is a double displacement reaction is the final one. Between Pb(NO3)2 and HCl.
Answer:
you aready did it ? would love to help
Explanation: