Chromium oxide (Cr2O5) More... Molecular Weight. 151.99 g/mol. Component Compounds.
Answer :
The equilibrium concentration of CO is, 0.016 M
The equilibrium concentration of Cl₂ is, 0.034 M
The equilibrium concentration of COCl₂ is, 0.139 M
Explanation :
The given chemical reaction is:

Initial conc. 0.1550 0.173 0
At eqm. (0.1550-x) (0.173-x) x
As we are given:

The expression for equilibrium constant is:
![K_c=\frac{[COCl_2]}{[CO][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCOCl_2%5D%7D%7B%5BCO%5D%5BCl_2%5D%7D)
Now put all the given values in this expression, we get:

x = 0.139 and x = 0.193
We are neglecting value of x = 0.193 because equilibrium concentration can not be more than initial concentration.
Thus, we are taking value of x = 0.139
The equilibrium concentration of CO = (0.1550-x) = (0.1550-0.139) = 0.016 M
The equilibrium concentration of Cl₂ = (0.173-x) = (0.173-0.139) = 0.034 M
The equilibrium concentration of COCl₂ = x = 0.139 M
Answer:
6.66 s will it take for [AB] to reach 1/3 of its initial concentration 1.50 mol/L.
Explanation:
![Rate = k[AB]^2](https://tex.z-dn.net/?f=Rate%20%3D%20k%5BAB%5D%5E2)
The order of the reaction is 2.
Integrated rate law for second order kinetic is:
Where,
is the initial concentration = 1.50 mol/L
is the final concentration = 1/3 of initial concentration =
= 0.5 mol/L
Rate constant, k = 0.2 L/mol*s
Applying in the above equation as:-


<u>6.66 s will it take for [AB] to reach 1/3 of its initial concentration 1.50 mol/L.</u>
<span>the one that is not a factor that contribute to natural selection is : Population stability
population refer to the capability of a community to maintain its total amount of organisms within a specific period of time.
This has nothing to do with natural selection, which basically a nature's way to reduce the number of organism to findout which organisms are more adaptive</span>
Answer:
B.
Explanation:
The up and down movement of gases and liquids caused by heat transfer is convection.