We need (i) the stoichiometric equation, and (ii) the equivalent mass of dihydrogen.
Explanation:
1
2
N
2
(
g
)
+
3
2
H
2
(
g
)
→
N
H
3
(
g
)
11.27
g
of ammonia represents
11.27
⋅
g
17.03
⋅
g
⋅
m
o
l
−
1
=
?
?
m
o
l
.
Whatever this molar quantity is, it is clear from the stoichiometry of the reaction that 3/2 equiv of dihydrogen gas were required. How much dinitrogen gas was required?
Answer:
C2H5NO
Explanation:
constituent elements N O C H
Mass composition 0.420 0.480 0.540 0.135
mole ratio 0.42/14 0.48/16 0.54/12 0.135/1
= 0.03 0.03 0.045 0.135
dividing by the smallest 0.03/0.03 0.03/0.03 0.045/0.03 0.135/0.03
ratio = 1 1 1.5 4.5
= 1 1 2 5
EMPERICAL FORMULA = C2H5NO
Sharing of valence electrons.
Explanation:
In a covalent bonds, there is sharing of the valence electrons used in bonding between the two combining species.
The atoms taking part do not have a wide electronegativity difference between them and so they share the valence electrons to complete their octet and ensure their stability.
- For the formation of this bond type, each of the atom requires a odd or unpaired electrons.
- Covalent bonds are formed between atoms having zero or very small electronegativity difference.
Learn more:
Covalent bonds brainly.com/question/10903097
#learnwithBrainly