<u>Answer:</u> The balanced chemical equation is written below.
<u>Explanation:</u>
Double displacement reaction is defined as the reaction in which exchange of ions takes place.

When sodium permanganate reacts with iron (III) chloride, it leads to the production of sodium chloride and iron (III) permanganate.
The chemical equation for the reaction of sodium permanganate and iron (III) chloride follows:

By Stoichiometry of the reaction:
3 moles of aqueous solution of sodium permanganate reacts with 1 mole of aqueous solution of iron (III) chloride to produce 1 mole of solid iron permanganate and 3 moles of aqueous solution of sodium chloride
Hence, the balanced chemical equation is written above.
A mixture means to elements where mixed together but a compound means they have bonded to make a different chemical
Answer:
C. Trp D. Phe E. Tyr
Explanation:
The concentration of a protein has a direct relation with absorbance of the protein in a UV spectrophotometer. The formula which relates concentration with absorbance is described as under:
A = ∈ x c x l
where, A = Absorbance
∈ = Molar extinction co-efficient
c = Concentration of absorbing species i.e. protein
l = Path length of light
Tryptophan (Trp), phenylalanine (Phe ) and tyrosine (Tyr) are three aromatic amino acids which are used to measure protein concentration by UV. It is mainly because of tryptophan (Trp), protein absorbs at 280 nm which gives us an idea of protein concentration during UV spectroscopy.
The table depicting the wavelength at which these amino acids absorb and their respective molar extinction coefficient is as under:
Amino acid Wavelength Molar extinction co-efficient (∈)
Tryptophan 282 nm 5690
Tyrosine 274 nm 1280
Phenylalanine 257 nm 570
In view of table above, we can easily see that Molar extinction co-efficient (∈) of Tryptophan is highest amongst all these 3 amino acids that is why it dominates while measuring concentration.
There are four types of chemical bonds essential for life to exist: Ionic Bonds, Covalent Bonds, Hydrogen Bonds, and van der Waals interactions. We need all of these different kinds of bonds to play various roles in biochemical interactions. These bonds vary in their strengths.
To play a variety of roles in biochemical interactions, we require all of these diverse sorts of linkages. The tensile strength of these linkages varies. In chemistry, we consider the range of strengths between ionic and covalent bonds to be overlapping. This indicates that in water, ionic bonds usually dissociate. As a result, we shall consider these bonds from strongest to weakest in the following order:
Covalent is followed by ionic, hydrogen, and van der Waals.
To know more about 4 different types of bonds, visit;
brainly.com/question/17401243
#SPJ4
Answer:
B is the Charlotte
Explanation:
it is Charlotte because it has 4 wheels