initial speed of the stuntman is given as

angle of inclination is given as

now the components of the velocity is given as


here it is given that the ramp on the far side of the canyon is 25 m lower than the ramp from which she will leave.
So the displacement in vertical direction is given as



by solving above equation we have

Now in the above interval of time the horizontal distance moved by it is given by


since the canyon width is 77 m which is less than the horizontal distance covered by the stuntman so here we can say that stuntman will cross the canyon.
1 newton-meter is 1 Joule, the unit of work and energy.
To solve the problem it is necessary to apply the Malus Law. Malus's law indicates that the intensity of a linearly polarized beam of light, which passes through a perfect analyzer with a vertical optical axis is equivalent to:

Where,
indicates the intensity of the light before passing through the polarizer,
I is the resulting intensity, and
indicates the angle between the axis of the analyzer and the polarization axis of the incident light.
Since we have two objects the law would be,

Replacing the values,



Therefore the intesity of the light after it has passes through both polarizers is 
Option number three is correct energy can be transformed and moved and released but it can't be destroyed and doesn't disappear.
Choices 'a', 'c', and 'd' are true.
In choice 'b', I'm not sure what it means when it says that masses
are 'balanced'. To me, masses are only balanced when they're on
a see-saw, or on opposite ends of a rope that goes over a pulley.
Maybe the statement means that the mass of the nucleus and the
mass of the electron cloud are equal. This is way false. It takes
more than 1,800 electrons to make the mass of ONE proton or
neutron, and the most complex atom in nature only has 92 electrons
in it. So there's no way that the masses of the nucleus and the electrons
in one atom could ever be anywhere near equal.