Lipids and <span>Polysaccharides r the answers hoped i helped</span>
Answer:
the distance from charge A to C is r₁₃= 1.216 m
Explanation:
following Coulomb's law , the force exerted by 2 point charges between themselves is:
F= k*q₁*q₂/r₁₂² , where q is charge , r is distance and 1 and 2 represents the charge A and charge B respectively , k=constant
since C ( denoted as 3) is at equilibrium
F₁₃=F₂₃
k*q₁*q₃/r₁₃²=k*q₂*q₃/r₂₃²
q₁/r₁₃²=q₂/r₂₃²
r₁₃²/q₁=r₂₃²/q₂
r₂₃=r₁₃*√(q₂/q₁)
since C is at rest and is co linear with A and B ( otherwise it would receive a net force in either vertical or horizontal direction) , we have
r₁₃+r₂₃=d=r₁₂
r₁₃+r₁₃*√(q₂/q₁)=d
r₁₃*(1+√(q₂/q₁))=d
r₁₃=d/(1+√(q₂/q₁))
replacing values
r₁₃=d/(1+√(q₂/q₁)) = 3.00 m/(1+√(3.10 C/1.44 C)) = 1.216 m
thus the distance from charge A to C is r₁₃= 1.216 m
1: only half the outlet is switched and the lamp is in the other half
2: the lamp is turned off.
3: The light bulb is burned out
4: the switch might be broken
5: the fuse might be blown
6: the electricity might be off
There's a crest and a trough in each complete wave. So the question is describing 10 complete waves.
After that, the question becomes somewhat murky. It goes on to say "its time period is 0.2 seconds".
-- The "time period" of a wave is usually defined as the time for <u><em>one</em></u> complete wave. If that's what the phrase means, then ...
Frequency = ( 1/0.2sec )
<em>Frequency = 5 Hz.</em>
<em>= = = = = = = = = =</em>
<u>BUT</u> ... Is the question awkwardly trying to tell us that the <u><em>10 waves</em></u> take 0.2 seconds ? If that's what it's saying, then ...
Frequency = (10) / (0.2 sec)
<em>Frequency = 50 Hz .</em>
Saturn is a planet in solar system. It's ring is made out of small covered ice particle. It has over 30 moons.