Answer:
The amount of HC₂H3₃2(aq) in the flask after the addition of 5.0mL of NaOH(aq) compared to the amount of HC₂H₃O₂(aq) in the flask after the addition of 1.0mL is much smaller because more HC₂H₃O₂(aq) is required to react with 5.0 mL NaOH than with 1.0 mL NaOH.
Explanation:
Equation of the reaction between acetic acid, HC₂H₃O₂(aq) and sodium hydroxide, NaOH(aq) is given below:
CH₃COOH (aq) + NaOH (aq) ----> CH₃COONa (aq) + H₂O
The equation of the reaction shows that acetic acid andsodium hydroxide will react in a 1:1 ratio
Since the concentration of NaOH was not given, we can assume that the concentration is 0.01 M
Moles of NaOH in 5.0 mL of 0.01 M NaOH = 0.01 × 5/1000 = 0.00005 moles
Moles of NaOH in 1.0 mL of 0.01 M NaOH = 0.01 ×1/1000 = 0.0001 moles
Ratio of moles of NaOH in 5.0 mL to 1.0 mL = 0.00005/0.00001 = 5
There are five times more moles of NaOH in 5.0 mL than in 1.0 mL and this means that 5 times more the quantity of HC₂H₃O2(aq) required to react with 1.0 mL NaoH is needed to react with 5.0 mL NaOH.
Therefore, the amount of HC₂H₃O2(aq) in the flask after the addition of 5.0mL of NaOH(aq) compared to the amount of HC₂H₃O₂(aq) in the flask after the addition of 1.0mL is much smaller because more HC₂H₃O₂(aq) is required to react with 5.0 mL NaOH than with 1.0 mL NaOH.
BaCl₂(aq) + Na₂SO₄(aq) = BaSO₄(s) + 2NaCl(aq)
Ba²⁺(aq) + 2Cl⁻(aq) + 2Na⁺(aq) + SO₄²⁻(aq) = BaSO₄(s) + 2Na⁺(aq) + 2Cl⁻(aq)
Ba²⁺(aq) + SO₄²⁻(aq)= BaSO₄(s)
Answer:
25.04 g is the mass of pentane
Explanation:
Pentane density = Pentane mass / Pentane volume
1 cm³ = 1mL
0.626 g/mL = Pentane mass / Pentane volume
0.626 g/mL = Pentane mass / 40 mL
0.626 g/mL . 40 mL = Pentane mass → 25.04 g
Answer:
Choose three different light levels, and place four identical plants under each light level to observe the light’s effect on multiple plants.
Explanation: