This is a reaction of combustion of methane
CH₄ + 2O₂ = CO₂ + 2H₂O
k(H₂O)=2
Answer: the answer is True
Explanation:
Reaction 1 : yes
Reaction 2 : no
<h3>Further explanation</h3>
The metal activity series is expressed in voltaic series
Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Ag-Pt-Au
The more to the left, the metal is more reactive (easily release electrons) and the stronger reducing agent
The more to the right, the metal is less reactive (harder to release electrons) and the stronger oxidizing agent
So that the metal located on the left can push the metal on the right in the redox reaction
From activity series of Halogen :
F₂>Cl₂>Br₂>I₂
F₂ is the strongest oxidizing agent
1. Reaction
Cl₂ + 2Rbl - 2RbCI+ I₂
Cl₂>I₂⇒reaction can occur⇒yes, reactions will take place.
2. Reaction
I₂ + NiBr₂ - NI₂ + Br₂
Br₂>I₂⇒Reaction can't occur⇒no, reaction will not take place
When organisms and plants died and sank to the bottom of swamps and oceans, brown soil-like materials called peat are formed. Over millions of years, the peat became covered with sand, clay and other minerals and the peat is converted into layers of sedimentary rocks. After a long time, different type of fossil fuels are formed.
Answer:
Reagent O₂ will be consumed first.
Explanation:
The balanced reaction between O₂ and C₄H₁₀ is:
2 C₄H₁₀ + 13 O₂ → 8 CO₂ + 10 H₂O
Then, by reaction stoichiometry, the following amounts of reactants and products participate in the reaction:
- C₄H₁₀: 2 moles
- O₂: 13 moles
- CO₂: 8 moles
- H₂O: 10 moles
Being:
- C: 12 g/mole
- H: 1 g/mole
- O: 16 g/mole
The molar mass of the compounds that participate in the reaction is:
- C₄H₁₀: 4*12 g/mole + 10*1 g/mole= 58 g/mole
- O₂: 2*16 g/mole= 32 g/mole
- CO₂: 12 g/mole + 2*16 g/mole= 44 g/mole
- H₂O: 2*1 g/mole + 16 g/mole= 18 g/mole
Then, by reaction stoichiometry, the following mass quantities of reactants and products participate in the reaction:
- C₄H₁₀: 2 moles* 58 g/mole= 116 g
- O₂: 13 moles* 32 g/mole= 416 g
- CO₂: 8 moles* 44 g/mole= 352 g
- H₂O: 10 moles* 18 g/mole= 180 g
If 78.1 g of O₂ react, it is possible to apply the following rule of three: if by stoichiometry 416 g of O₂ react with 116 g of C₄H₁₀, 62.4 g of C₄H₁₀ with how much mass of O₂ do they react?

mass of O₂= 223.78 grams
But 21.78 grams of O₂ are not available, 78.1 grams are available. Since you have less mass than you need to react with 62.4 g of C₄H₁₀, <u><em>reagent O₂ will be consumed first.</em></u>