I think it is d I hope this help you if not let me know if it is not right
Answer:
A. when the mass has a displacement of zero
Explanation:
The velocity of a mass on a spring can be calculated by using the law of conservation of energy. In fact, the total energy of the mass-spring system is equal to the sum of the elastic potential energy (U) of the spring and the kinetic energy (K) of the mass:

where
k is the spring constant
x is the displacement of the mass with respect to the equilibrium position of the spring
m is the mass
v is the velocity of the mass
Since the total energy E must remain constant, we can notice the following:
- When the displacement is zero (x=0), the velocity must be maximum, because U=0 so K is maximum
- When the displacement is maximum, the velocity must be minimum (zero), because U is maximum and K=0
Based on these observations, we can conclude that the velocity of the mass is at its maximum value when the displacement is zero, so the correct option is A.
17
What would the scale read? zero
18 In free fall you are being pulled by a gravity. "Truly" weightless presumably happens in deep space where there is nothing to pull you.
19 coasters accelerate down to simulate weight loss/zeroised. As do NASA planes,
Roller coasters are for fun seekers. NASA is for science
Answer:
80 m/s
Explanation:
Given:
a = -5 m/s²
v = 0 m/s
Δx = 640 m
Find: v₀
v² = v₀² + 2a(x − x₀)
(0 m/s)² = v₀² + 2(-5 m/s²) (640 m)
v₀ = 80 m/s
Answer:
The weight of measuring stick is 9.8 N
Explanation:
given information:
the mass of the rock,
= 1 kg
measuring stick, x =1 m
d = 0.25 m
to find the weight of measuring stick, we can use the following equation:
τ = Fd
τ = 0
-
= 0
F_{r} = the force of the rock
F_{s} = the force of measuring stick

= m g
= 1 kg x 9.8 m/s
= 9.8 N
thus, the weight of measuring stick is 9.8 N