Answer:
Entropy change is favorable when a nonpolar molecule is transferred from water to a nonpolar solvent.
Explanation:
A nonpolar molecule is not miscible in water (polar solvent). Therefore, when mixed together, each specie will cluster together and solvation will not happen.
However, when you tranfer the nonpolar molecule to a nonpolar solvent, the solvent molecules will interact with the nonpolar molecule. This will increase entropy as the level of disorder will increase with solvation.
Answer:
<u></u>
Explanation:
The translated question is:
<em>What maximum amount of grams of potassium nitrate (V) can be dissolved in 300g of water at 90 °C</em>
<em></em>
<h2>Solution</h2>
<em></em>
To answer the question you need to consultate the solubiity information for potassium nitrate (V), KNO₃.
The attached table contains the solutibility table for KNO₃ at different temperatures.
At 90ºC it is 203g / 100g water.
Then, to calculate the <em>maximum amount of grams of potassium nitrate (V) that can be dissolved in 300g of water at 90 °C</em>, just multiply by the amount of water:
- 203g / 100g water × 300 g water = 609g ← answer
Answer: A) 67.1 moles
Explanation:
The balanced reaction is :


To calculate the moles, we use the equation:

According to stoichiometry;
2 moles of iron is produced by 3 moles of carbon monoxide
89.3 moles of iron is produced by=
moles of carbon monoxide
2 moles of carbon monoxide is produced by = 1 mole of oxygen
Thus 134 moles of carbon monoxide is produced by =
moles of oxygen
The statement that best describes the effect of low ionization energies and low electronegativities on metallic bonding is the first one - the valence electrons are easily delocalized.
Due to these low energies and negativities, valence electrons can be moved around quite easily and their positions may be altered quite drastically.
An atomic mass unit (symbolized AMU or amu) is defined as precisely 1/12 the mass of an atom of carbon-12. The carbon-12 (C-12) atom has six protons and six neutrons in its nucleus. In imprecise terms, one AMU is the average of the proton rest mass and the neutron rest mass.