Appropriate units for the speed of a chemical reaction, the reaction rate, are M/s
Answer is: at higher temperatures reaction will go to the right (forward), more products (C₂H₄ and H₂) will be produce, because this is endothermic reaction (ΔH<span> is positive, </span>energy is consumed) and according Le Chatelier's principle <span>heat is included as a reactant. </span> .
When the reaction equation is:
HF ↔ H+ + F-
and when the Ka expression
= concentration of products/concentration of reactions
so, Ka = [H+][F-]/[HF]
when we assume:
[H+] = [F-] = X
and [HF] = 0.35 - X
So, by substitution:
6.8 x 10^-4 = X^2 / (0.35 - X) by solving for X
∴ X = 0.015 M
∴[H+] = X = 0.015
when PH = -㏒[H+]
∴PH = -㏒0.015
= 1.8
Hey there!:
HCl + MnO2 → MnCl2 + H2O + Cl2
* in HCl the oxidation state of Cl is -1 .
* on the product side the oxidation state is 0 .
* therefore Cl gains electrons .
* in MnO2 the oxidation state of Mn is +4
* in MnCl2 the oxidation state of Mn is +2
Therefore Mn loses electrons
Answer A
Hope That helps!
Answer:
The volume is increased.
Explanation:
According to <em>Charles' Law</em>, " <em>at constant pressure the volume and temperature of the gas are directly proportional to each other</em>". Mathematically this law is presented as;
V₁ / T₁ = V₂ / T₂ -----(1)
In statement the data given is,
T₁ = 10 °C = 283.15 K ∴ K = 273.15 + °C
T₂ = 20 °C = 293.15 K
So, it is clear that the temperature is being increased hence, we will find an increase in volume. Let us assume that the starting volume is 100 L, so,
V₁ = 100 L
V₂ = Unknown
Now, we will arrange equation 1 for V₂ as,
V₂ = V₁ × T₂ / T₁
Putting values,
V₂ = 100 L × 293.15 K / 283.15 K
V₂ = 103.52 L
Hence, it is proved that by increasing temperature from 10 °C to 20 °C resulted in the increase of Volume from 100 L to 103.52 L.