Answer:
C.) A high velocity and Large mass.
Explanation:
Momentum of any object is defined by following formula
Here
: m = mass of object
v = velocity of object
now we know that since momentum is product of mass and velocity
So in order to have more momentum we need the value of this product to be more. So this product will me large is both the physical quantity will be more in magnitude. So if mass is large and velocity will be more then the product of them will be large and hence the momentum of object will be more. Btw I had that question too.
Answer:
Doing science could be defined as carrying out scientific processes, like the scientific method, to add to science's body of knowledge.
Answer: A (Ft)
Explanation: The impulse experienced by the object equals the change in momentum of the object. In equation form, F • t = m • Δ v
Answer:
t = 0.657 s
Explanation:
First, let's use the appropiate equations to solve this:
V = √T/u
This expression gives us a relation between speed of a disturbance and the properties of the material, in this case, the rope.
Where:
V: Speed of the disturbance
T: Tension of the rope
u: linear density of the rope.
The density of the rope can be calculated using the following expression:
u = M/L
Where:
M: mass of the rope
L: Length of the rope.
We already have the mass and length, which is the distance of the rope with the supports. Replacing the data we have:
u = 2.31 / 10.4 = 0.222 kg/m
Now, replacing in the first equation:
V = √55.7/0.222 = √250.9
V = 15.84 m/s
Finally the time can be calculated with the following expression:
V = L/t ----> t = L/V
Replacing:
t = 10.4 / 15.84
t = 0.657 s
The heat of fusion for water is the amount of energy needed for water to <span>melt. (c)</span>